Slack: Getting Past Burnout, Busywork, and the Myth of Total Efficiency


Tom DeMarco - 2001
    That principle is the value of slack, the degree of freedom in a company that allows it to change. Implementing slack could be as simple as adding an assistant to a department and letting high-priced talent spend less time at the photocopier and more time making key decisions, or it could mean designing workloads that allow people room to think, innovate, and reinvent themselves. It means embracing risk, eliminating fear, and knowing when to go slow. Slack allows for change, fosters creativity, promotes quality, and, above all, produces growth. With an approach that works for new- and old-economy companies alike, this revolutionary handbook debunks commonly held assumptions about real-world management, and gives you and your company a brand-new model for achieving and maintaining true effectiveness.

Applied Predictive Modeling


Max Kuhn - 2013
    Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f

Data Analytics Made Accessible


Anil Maheshwari - 2014
    It is a conversational book that feels easy and informative. This short and lucid book covers everything important, with concrete examples, and invites the reader to join this field. The chapters in the book are organized for a typical one-semester course. The book contains case-lets from real-world stories at the beginning of every chapter. There is a running case study across the chapters as exercises. This book is designed to provide a student with the intuition behind this evolving area, along with a solid toolset of the major data mining techniques and platforms. Students across a variety of academic disciplines, including business, computer science, statistics, engineering, and others are attracted to the idea of discovering new insights and ideas from data. This book can also be gainfully used by executives, managers, analysts, professors, doctors, accountants, and other professionals to learn how to make sense of the data coming their way. This is a lucid flowing book that one can finish in one sitting, or can return to it again and again for insights and techniques. Table of Contents Chapter 1: Wholeness of Business Intelligence and Data Mining Chapter 2: Business Intelligence Concepts & Applications Chapter 3: Data Warehousing Chapter 4: Data Mining Chapter 5: Decision Trees Chapter 6: Regression Models Chapter 7: Artificial Neural Networks Chapter 8: Cluster Analysis Chapter 9: Association Rule Mining Chapter 10: Text Mining Chapter 11: Web Mining Chapter 12: Big Data Chapter 13: Data Modeling Primer Appendix: Data Mining Tutorial using Weka

Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS


John K. Kruschke - 2010
    Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884            0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke

The Book of Why: The New Science of Cause and Effect


Judea Pearl - 2018
    Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.

Hadoop Explained


Aravind Shenoy - 2014
    Hadoop allowed small and medium sized companies to store huge amounts of data on cheap commodity servers in racks. The introduction of Big Data has allowed businesses to make decisions based on quantifiable analysis. Hadoop is now implemented in major organizations such as Amazon, IBM, Cloudera, and Dell to name a few. This book introduces you to Hadoop and to concepts such as ‘MapReduce’, ‘Rack Awareness’, ‘Yarn’ and ‘HDFS Federation’, which will help you get acquainted with the technology.

Sprint: How to Solve Big Problems and Test New Ideas in Just Five Days


Jake Knapp - 2016
    And now there’s a sure-fire way to solve their problems and test solutions: the sprint.While working at Google, designer Jake Knapp created a unique problem-solving method that he coined a “design sprint”—a five-day process to help companies answer crucial questions. His ‘sprints’ were used on everything from Google Search to Chrome to Google X. When he moved to Google Ventures, he joined Braden Kowitz and John Zeratsky, both designers and partners there who worked on products like YouTube and Gmail. Together Knapp, Zeratsky, and Kowitz have run over 100 sprints with their portfolio companies. They’ve seen firsthand how sprints can overcome challenges in all kinds of companies: healthcare, fitness, finance, retailers, and more.A practical guide to answering business questions, Sprint is a book for groups of any size, from small startups to Fortune 100s, from teachers to non-profits. It’s for anyone with a big opportunity, problem, or idea who needs to get answers today.

Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems)


Jiawei Han - 2000
    Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge.Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business dataUpdates that incorporate input from readers, changes in the field, and more material on statistics and machine learningDozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projectsComplete classroom support for instructors at www.mkp.com/datamining2e companion site

Learning Python


Mark Lutz - 2003
    Python is considered easy to learn, but there's no quicker way to mastery of the language than learning from an expert teacher. This edition of "Learning Python" puts you in the hands of two expert teachers, Mark Lutz and David Ascher, whose friendly, well-structured prose has guided many a programmer to proficiency with the language. "Learning Python," Second Edition, offers programmers a comprehensive learning tool for Python and object-oriented programming. Thoroughly updated for the numerous language and class presentation changes that have taken place since the release of the first edition in 1999, this guide introduces the basic elements of the latest release of Python 2.3 and covers new features, such as list comprehensions, nested scopes, and iterators/generators. Beyond language features, this edition of "Learning Python" also includes new context for less-experienced programmers, including fresh overviews of object-oriented programming and dynamic typing, new discussions of program launch and configuration options, new coverage of documentation sources, and more. There are also new use cases throughout to make the application of language features more concrete. The first part of "Learning Python" gives programmers all the information they'll need to understand and construct programs in the Python language, including types, operators, statements, classes, functions, modules and exceptions. The authors then present more advanced material, showing how Python performs common tasks by offering real applications and the libraries available for those applications. Each chapter ends with a series of exercises that will test your Python skills and measure your understanding."Learning Python," Second Edition is a self-paced book that allows readers to focus on the core Python language in depth. As you work through the book, you'll gain a deep and complete understanding of the Python language that will help you to understand the larger application-level examples that you'll encounter on your own. If you're interested in learning Python--and want to do so quickly and efficiently--then "Learning Python," Second Edition is your best choice.

Small Data: The Tiny Clues that Uncover Huge Trends


Martin Lindstrom - 2016
    You’ll learn…• How a noise reduction headset at 35,000 feet led to the creation of Pepsi’s new trademarked signature sound.• How a worn down sneaker discovered in the home of an 11-year-old German boy led to LEGO’s incredible turnaround.• How a magnet found on a fridge in Siberia resulted in a U.S. supermarket revolution.• How a toy stuffed bear in a girl’s bedroom helped revolutionize a fashion retailer’s 1,000 stores in 20 different countries.• How an ordinary bracelet helped Jenny Craig increase customer loyalty by 159% in less than a year.• How the ergonomic layout of a car dashboard led to the redesign of the Roomba vacuum.

Performance Dashboards: Measuring, Monitoring, and Managing Your Business


Wayne Eckerson
    Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution.

How to Measure Anything: Finding the Value of "Intangibles" in Business


Douglas W. Hubbard - 1985
    Douglas Hubbard helps us create a path to know the answer to almost any question in business, in science, or in life . . . Hubbard helps us by showing us that when we seek metrics to solve problems, we are really trying to know something better than we know it now. How to Measure Anything provides just the tools most of us need to measure anything better, to gain that insight, to make progress, and to succeed." -Peter Tippett, PhD, M.D. Chief Technology Officer at CyberTrust and inventor of the first antivirus software "Doug Hubbard has provided an easy-to-read, demystifying explanation of how managers can inform themselves to make less risky, more profitable business decisions. We encourage our clients to try his powerful, practical techniques." -Peter Schay EVP and COO of The Advisory Council "As a reader you soon realize that actually everything can be measured while learning how to measure only what matters. This book cuts through conventional cliches and business rhetoric and offers practical steps to using measurements as a tool for better decision making. Hubbard bridges the gaps to make college statistics relevant and valuable for business decisions." -Ray Gilbert EVP Lucent "This book is remarkable in its range of measurement applications and its clarity of style. A must-read for every professional who has ever exclaimed, 'Sure, that concept is important, but can we measure it?'" -Dr. Jack Stenner Cofounder and CEO of MetraMetrics, Inc.

How to Lie with Statistics


Darrell Huff - 1954
    Darrell Huff runs the gamut of every popularly used type of statistic, probes such things as the sample study, the tabulation method, the interview technique, or the way the results are derived from the figures, and points up the countless number of dodges which are used to fool rather than to inform.

How Would You Move Mount Fuji? Microsoft's Cult of the Puzzle--How the World's Smartest Companies Select the Most Creative Thinkers


William Poundstone - 2003
    For the first time, William Poundstone reveals the toughest questions used at Microsoft and other Fortune 500 companies -- and supplies the answers. He traces the rise and controversial fall of employer-mandated IQ tests, the peculiar obsessions of Bill Gates (who plays jigsaw puzzles as a competitive sport), the sadistic mind games of Wall Street (which reportedly led one job seeker to smash a forty-third-story window), and the bizarre excesses of today's hiring managers (who may start off your interview with a box of Legos or a game of virtual Russian roulette). How Would You Move Mount Fuji? is an indispensable book for anyone in business. Managers seeking the most talented employees will learn to incorporate puzzle interviews in their search for the top candidates. Job seekers will discover how to tackle even the most brain-busting questions, and gain the advantage that could win the job of a lifetime. And anyone who has ever dreamed of going up against the best minds in business may discover that these puzzles are simply a lot of fun. Why are beer cans tapered on the end, anyway?

High Output Management


Andrew S. Grove - 1983
    In High Output Management, Andrew S. Grove, former chairman and CEO (and employee number three) of Intel, shares his perspective on how to build and run a company. Born of Grove’s experiences at one of America’s leading technology companies, this legendary management book is a Silicon Valley staple, equally appropriate for sales managers, accountants, consultants, and teachers, as well as CEOs and startup founders. Grove covers techniques for creating highly productive teams, demonstrating methods of motivation that lead to peak performance—throughout, High Output Management is a practical handbook for navigating real-life business scenarios and a powerful management manifesto with the ability to revolutionize the way we work.