Book picks similar to
Elementary Statistics: Picturing the World by Ron Larson
textbooks
math
science
statistics
Elementary Statistics: A Step by Step Approach
Allan G. Bluman - 1992
The book is non-theoretical, explaining concepts intuitively and teaching problem solving through worked examples and step-by-step instructions. This edition places more emphasis on conceptual understanding and understanding results. This edition also features increased emphasis on Excel, MINITAB, and the TI-83 Plus and TI 84-Plus graphing calculators, computing technologies commonly used in such courses.
Social Statistics for a Diverse Society
Chava Frankfort-Nachmias - 1996
The authors help students learn key sociological concepts through real research examples related to the dynamic interplay of race, class, gender, and other social variables.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Statistical Techniques in Business & Economics [With CDROM]
Douglas A. Lind - 1974
The text is non-threatening and presents concepts clearly and succinctly with a conversational writing style. All statistical concepts are illustrated with solved applied examples immediately upon introduction. Self reviews and exercises for each section, and review sections for groups of chapters also support the student learning steps. Modern computing applications (Excel, Minitab, and MegaStat) are introduced, but the text maintains a focus on presenting statistics concepts as applied in business as opposed to technology or programming methods. The thirteenth edition continues as a students' text with increased emphasis on interpretation of data and results.
Applied Multivariate Statistical Analysis
Richard A. Johnson - 1982
of Wisconsin-Madison) and Wichern (Texas A&M U.) present the newest edition of this college text on the statistical methods for describing and analyzing multivariate data, designed for students who have taken two or more statistics courses. The fifth edition includes the addition of seve
Statistics for Managers Using Excel [with Student CD]
David M. Levine - 1997
The book focuses on the concepts of statistics with applications to the functional areas of business. It is rich in applications from accounting, finance, marketing, management and economics, covering data collection, tables and charts, probability, estimation, and more. For professionals, particularly managers, making financial analyses and decisions.
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Elementary Statistics
Mario F. Triola - 1983
This text is highly regarded because of its engaging and understandable introduction to statistics. The author's commitment to providing student-friendly guidance through the material and giving students opportunities to apply their newly learned skills in a real-world context has made Elementary Statistics the #1 best-seller in the market.
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Hadley Wickham - 2016
This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible.
Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way.
You’ll learn how to:
Wrangle—transform your datasets into a form convenient for analysis
Program—learn powerful R tools for solving data problems with greater clarity and ease
Explore—examine your data, generate hypotheses, and quickly test them
Model—provide a low-dimensional summary that captures true "signals" in your dataset
Communicate—learn R Markdown for integrating prose, code, and results
Single Variable Essential Calculus: Early Transcendentals
James Stewart - 1995
In writing the book James Stewart asked himself:What is essential for a three-semester calculus course for scientists and engineers? Stewart's SINGLE VARIABLE ESSENTIAL CALCULUS: EARLY TRANSCENDENTALS offers a concise approach to teaching calculus, focusing on major concepts and supporting those with precise definitions, patient explanations, and carefully graded problems. SINGLE VARIABLE ESSENTIAL CALCULUS: EARLY TRANSCENDENTALS is only 850 pages-two-thirds the size of Stewart's other calculus texts (CALCULUS, FIFTH EDITION AND CALCULUS, EARLY TRANSCENDENTALS, Fifth Edition)-yet it contains almost all of the same topics. The author achieved this relative brevity mainly by condensing the exposition and by putting some of the features on the website www.StewartCalculus.com. Despite the reduced size of the book, there is still a modern flavor: Conceptual understanding and technology are not neglected, though they are not as prominent as in Stewart's other books. SINGLE VARIABLE ESSENTIAL CALCULUS: EARLY TRANSCENDENTALS has been written with the same attention to detail, eye for innovation, and meticulous accuracy that have made Stewart's textbooks the best-selling calculus texts in the world.
Introductory Statistics
Neil A. Weiss - 1987
This book develops statistical thinking over rote drill and practice. The Nature of Statistics; Organizing Data; Descriptive Measures; Probability Concepts; Discrete Random Variables; The Normal Distribution; The Sampling Distribution of the Sample Menu; Confidence Intervals for One Population Mean; Hypothesis Tests for One Population Mean; Inferences for Two Population Means; Inferences for Population Standard Deviations; Inferences for Population Proportions; Chi-Square Procedures; Descriptive Methods in Regression and Correlation; Inferential Methods in Regression and Correlation; Analysis of Variance (ANOVA)
For all readers interested in Introductory Statistics.
Statistics for the Behavioral Sciences
Frederick J. Gravetter - 1996
You will have numerous opportunities to practice statistical techniques through learning checks, examples, demonstrations, and problems. Exam preparation is made easy with a student companion website that provides tutorials, crossword puzzles, flashcards, learning objectives, and more!
Statistics for People Who (Think They) Hate Statistics
Neil J. Salkind - 2000
The book begins with an introduction to the language of statistics and then covers descriptive statistics and inferential statistics. Throughout, the author offers readers:- Difficulty Rating Index for each chapter′s material- Tips for doing and thinking about a statistical technique- Top tens for everything from the best ways to create a graph to the most effective techniques for data collection- Steps that break techniques down into a clear sequence of procedures- SPSS tips for executing each major statistical technique- Practice exercises at the end of each chapter, followed by worked out solutions.The book concludes with a statistical software sampler and a description of the best Internet sites for statistical information and data resources. Readers also have access to a website for downloading data that they can use to practice additional exercises from the book. Students and researchers will appreciate the book′s unhurried pace and thorough, friendly presentation.
The Cartoon Guide to Statistics
Larry Gonick - 1993
Never again will you order the Poisson Distribution in a French restaurant!This updated version features all new material.
Statistics for Business & Economics
James T. McClave - 1991
Theoretical, yet applied. Statistics for Business and Economics, Eleventh Edition, gives you the best of both worlds. Using a rich array of applications from a variety of industries, McClave/Sincich/Benson clearly demonstrates how to use statistics effectively in a business environment.The book focuses on developing statistical thinking so the reader can better assess the credibility and value of inferences made from data. As consumers and future producers of statistical inferences, readers are introduced to a wide variety of data collection and analysis techniques to help them evaluate data and make informed business decisions. As with previous editions, this revision offers an abundance of applications with many new and updated exercises that draw on real business situations and recent economic events. The authors assume a background of basic algebra.