Thinking in Systems: A Primer


Donella H. Meadows - 2008
    Edited by the Sustainability Institute’s Diana Wright, this essential primer brings systems thinking out of the realm of computers and equations and into the tangible world, showing readers how to develop the systems-thinking skills that thought leaders across the globe consider critical for 21st-century life.Some of the biggest problems facing the world—war, hunger, poverty, and environmental degradation—are essentially system failures. They cannot be solved by fixing one piece in isolation from the others, because even seemingly minor details have enormous power to undermine the best efforts of too-narrow thinking.While readers will learn the conceptual tools and methods of systems thinking, the heart of the book is grander than methodology. Donella Meadows was known as much for nurturing positive outcomes as she was for delving into the science behind global dilemmas. She reminds readers to pay attention to what is important, not just what is quantifiable, to stay humble, and to stay a learner.In a world growing ever more complicated, crowded, and interdependent, Thinking in Systems helps readers avoid confusion and helplessness, the first step toward finding proactive and effective solutions.

Learning From Data: A Short Course


Yaser S. Abu-Mostafa - 2012
    Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.

Respiratory Physiology: The Essentials


John B. West - 1994
    The Seventh Edition updates and revises material to reflect current advances in respiratory science but does not stray from the proven formula students and faculty have enjoyed since 1974.New updates include physiology of pulmonary capillaries, hypoxic pulmonary vasoconstriction, pulmonary edema, surface tension, elastic properties of the lung and chest wall, metabolic functions of the lung, and perinatal respiration. Ample illustrations and pedagogical features help clarify important equations and concepts. USMLE-style review questions at the end of each chapter help students review for class or boards.

Biochemical Engineering Fundamentals


James E. Bailey - 1977
    The biological background provided enables students to comprehend the major problems in biochemical engineering and formulate effective solutions.

Modern Compressible Flow: With Historical Perspective


John D. Anderson Jr. - 1981
    In keeping with previous versions, the 3rd edition uses numerous historical vignettes that show the evolution of the field. New pedagogical features--"Roadmaps" showing the development of a given topic, and "Design Boxes" giving examples of design decisions--will make the 3rd edition even more practical and user-friendly than before. The 3rd edition strikes a careful balance between classical methods of determining compressible flow, and modern numerical and computer techniques (such as CFD) now used widely in industry & research. A new Book Website will contain all problem solutions for instructors.

Game Theory


Drew Fudenberg - 1991
    The analytic material is accompanied by many applications, examples, and exercises. The theory of noncooperative games studies the behavior of agents in any situation where each agent's optimal choice may depend on a forecast of the opponents' choices. "Noncooperative" refers to choices that are based on the participant's perceived selfinterest. Although game theory has been applied to many fields, Fudenberg and Tirole focus on the kinds of game theory that have been most useful in the study of economic problems. They also include some applications to political science. The fourteen chapters are grouped in parts that cover static games of complete information, dynamic games of complete information, static games of incomplete information, dynamic games of incomplete information, and advanced topics.--mitpress.mit.edu

The Fractal Geometry of Nature


Benoît B. Mandelbrot - 1977
    The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.

Judgment in Managerial Decision Making


Max H. Bazerman - 1986
    But, with Max Bazerman's Judgment in Managerial Decision Making, Sixth Edition, you can learn how to overcome those biases to make better managerial decisions. The text examines judgment in a variety of organizational contexts, and provides practical strategies for changing your decision-making processes and improving these processes so that they become part of your permanent behavior. Throughout, you'll findnumerous hands-on decision exercises and examples from the author's extensive executive training experience that will help you enhance the quality of your managerial judgment. Past editions have been used in top universities, in business schools, and in public policy, psychology, and economics classes. In addition, the text has been widely recognized by practitioners in the world of behavioral finance. Revised with two new chapters This Sixth Edition now adds chapters on bounded ethicality (Chapter 8) and bounded awareness (Chapter 11). Both of these chapters are based on Bazerman's recent writing with Dolly Chugh and Mahzarin Banaji. Max H. Bazerman is the Jesse Isidor Straus Professor of Business Administration at the Harvard Business School. In addition, Max is also formally affiliated with the Kennedy School of Government, the Psychology Department, and the Program on Negotiation at Harvard. He is the author or co-author of over 150 research articles and chapters, and the author of numerous other books. Max was named one of the top 30 authors, speakers, and teachers of management by Executive Excellence in each of their two most recent rankings.

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Personal Finance


Jack R. Kapoor - 1991
    Financial planning for life -- from career strategies and consumer credit to investments and taxes to retirement and estate planning -- this handbook covers everything for making those all-important decisions.

Elementary Linear Algebra with Applications


Howard Anton - 1973
    It proceeds from familiar concepts to the unfamiliar, from the concrete to the abstract. Readers consistently praise this outstanding text for its expository style and clarity of presentation. The applications version features a wide variety of interesting, contemporary applications. Clear, accessible, step-by-step explanations make the material crystal clear. Established the intricate thread of relationships between systems of equations, matrices, determinants, vectors, linear transformations and eigenvalues.

Introduction to Real Analysis


Robert G. Bartle - 1982
    Therefore, this book provides the fundamental concepts and techniques of real analysis for readers in all of these areas. It helps one develop the ability to think deductively, analyze mathematical situations and extend ideas to a new context. Like the first two editions, this edition maintains the same spirit and user-friendly approach with some streamlined arguments, a few new examples, rearranged topics, and a new chapter on the Generalized Riemann Integral.

Statistics for Psychology


Arthur Aron - 1993
    This approach constantly reminds students of the logic behind what they are learning, and each procedure is taught both verbally and numerically, which helps to emphasize the concepts. Thoroughly revised, with new content and many new practice examples, this text takes the reader from basic procedures through analysis of variance (ANOVA). Students cover statistics and also learn to read and inderstand research articles. - SPSS examplesincluded with each procedure - Dozens of examples updated (especially the in-the-research-literature ones) - Reorganization - The self-contained chapters on correlation and regression have been moved after t-test and analysis of variance - Emphasis on definitional formulas - As opposed to computational formulas - Practical, up-to-date excerpts - For each procedure, the text explains how results are described in research articles. example being described in each way - Interesting examples throughout - Often include studies of or by researchers of diverse ethnicities - Complete package of ancillary materials - A web page with additional practice problems and extensive interactive study materials, plus four mini chapters covering additional material not in the text, a very substantial test bank; an instructors' manual that provides sample syllabi, lecture outlines, and ready-to-copy (or download) power-point slides or transparencies with examples not in the book; and a very complete students' study guide that also provides a thorough workbook for using SPSS with this book.

Java 2: The Complete Reference


Herbert Schildt - 2000
    This book is the most complete and up-to-date resource on Java from programming guru, Herb Schildt -- a must-have desk reference for every Java programmer.

The World Is Flat: A Brief History of the Twenty-first Century


Thomas L. Friedman - 2005
    With his inimitable ability to translate complex foreign policy and economic issues, Friedman explains how the flattening of the world happened at the dawn of the 21st century; what it means to countries, companies, communities and individuals; and how governments and societies can, and must, adapt.