CMOS VLSI Design: A Circuits and Systems Perspective


Neil H.E. Weste - 2004
    The authors draw upon extensive industry and classroom experience to explain modern practices of chip design. The introductory chapter covers transistor operation, CMOS gate design, fabrication, and layout at a level accessible to anyone with an elementary knowledge of digital electornics. Later chapters beuild up an in-depth discussion of the design of complex, high performance, low power CMOS Systems-on-Chip.

Essential Calculus


James Stewart - 2006
    In writing the book James Stewart asked himself: What is essential for a three-semester calculus course for scientists and engineers? Stewart's ESSENTIAL CALCULUS offers a concise approach to teaching calculus that focuses on major concepts and supports those concepts with precise definitions, patient explanations, and carefully graded problems. Essential Calculus is only 850 pages-two-thirds the size of Stewart's other calculus texts (CALCULUS, Fifth Edition and CALCULUS, EARLY TRANSCENDENTALS, Fifth Edition)-and yet it contains almost all of the same topics. The author achieved this relative brevity mainly by condensing the exposition and by putting some of the features on the website, www.StewartCalculus.com. Despite the reduced size of the book, there is still a modern flavor: Conceptual understanding and technology are not neglected, though they are not as prominent as in Stewart's other books. ESSENTIAL CALCULUS has been written with the same attention to detail, eye for innovation, and meticulous accuracy that have made Stewart's textbooks the best-selling calculus texts in the world.

Concepts of Modern Physics


Arthur Beiser - 2002
    Focusing on the ideas, this book considers relativity and quantum ideas to provide a framework for understanding the physics of atoms and nuclei.

Concepts of Modern Mathematics


Ian Stewart - 1975
    Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

The Road to Reality: A Complete Guide to the Laws of the Universe


Roger Penrose - 2004
    From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.

The Quantum World: The disturbing theory at the heart of reality (New Scientist Instant Expert)


New Scientist - 2017
    Things can exist in two places at once and travel backwards and forwards in time. Waves and particles are one and the same, and objects change their behaviour according to whether they are being watched. This is not some alternative universe but the realm of the very small, where quantum mechanics rules. In this weird world of atoms and their constituents, our common sense understanding of reality breaks down - yet quantum mechanics has never failed an experimental test. What does it all mean? For all its weirdness, quantum mechanics has given us many practical technologies including lasers and the transistors that underlie computers and all digital technology. In the future, it promises computers more powerful than any built before, the ability to communicate with absolute privacy, and even quantum teleportation. The Quantum World explores the past, present and future of quantum science, its applications and mind-bending implications. Discover how ideas from quantum mechanics are percolating out into the vast scale of the cosmos - perhaps, in the future, to reveal a new understanding of the big bang and the nature of space and time.ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles


Robert M. Eisberg - 1974
    Emphasizes the applications of theory, and contains new material on particle physics, electron-positron annihilation in solids and the Mossbauer effect. Includes new appendices on such topics as crystallography, Fourier Integral Description of a Wave Group, and Time-Independent Perturbation Theory.

The Physics of Star Trek


Lawrence M. Krauss - 1995
    Now Lawrence M. Krauss, an internationally known theoretical physicist and educator, has written the quintessential physics book for Trekkers and non-Trekkers alike.Anyone who has ever wondered, "Could this really happen?" will gain useful insights into the "Star Trek" universe (and, incidentally, the real universe) in this charming and accessible volume. Krauss boldly goes where "Star Trek" has gone -- and beyond. He uses the "Star Trek" future as a launching pad to discuss the forefront of modern physics. From Newton to Hawking, from Einstein to Feynman, from Kirk to Janeway, Krauss leads the reader on a voyage to the world of physics as we now know it and as it might one day be.Featuring the Top 10 biggest physics bloopers in "Star Trek," as selected by Nobel Prize-winning physicists and other dedicated Trekkers!"This book is fun, and Mr. Krauss has a nice touch with a tough subject...Readers drawn by frivolity will be treated to substance." "--New York Times Book Review""Today's science fiction is often tomorrow's science fact. The physics that underlies "Star Trek" is surely worth investigating. To confine our attention to terrestrial matters would be to limit the human spirit."--Stephen Hawking (in the foreword)A

Statistical Mechanics


R.K. Pathria - 1972
    Highly recommended for graduate-level libraries.' ChoiceThis highly successful text, which first appeared in the year 1972 and has continued to be popular ever since, has now been brought up-to-date by incorporating the remarkable developments in the field of 'phase transitions and critical phenomena' that took place over the intervening years. This has been done by adding three new chapters (comprising over 150 pages and containing over 60 homework problems) which should enhance the usefulness of the book for both students and instructors. We trust that this classic text, which has been widely acclaimed for its clean derivations and clear explanations, will continue to provide further generations of students a sound training in the methods of statistical physics.

Burnham's Celestial Handbook: An Observer's Guide to the Universe Beyond the Solar System, Volume 1: Andromeda Through Cetus


Robert Burnham Jr. - 1978
    The information presented includes: definitions, names, historical background, coordinates, classifications, physical descriptions, maps, charts, sketches, and observing guides. All told in an engaging manner.The series became an instant success with amateur astronomers, and remained so for decades. While it is now dated, it is still a popular source of information.Volume One lists the constellations from Andromeda to Cetus.

Introduction to Topology


Bert Mendelson - 1975
    It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.

Engineering Thermodynamics: A Computer Approach (Si Units Version) (Revised)


R.K. Rajput - 2009
    Pure Substances, The First And Second Laws, Gases, Psychrometrics, The Vapor, Gas And Refrigeration Cycles, Heat Transfer, Compressible Flow, Chemical Reactions, Fuels, And More Are Presented In Detail And Enhanced With Practical Applications. This Version Presents The Material Using SI Units And Has Ample Material On SI Conversion, Steam Tables, And A Mollier Diagram. A CD-ROM, Included With The Print Version Of The Text, Includes A Fully Functional Version Of Quickfield (Widely Used In Industry), As Well As Numerous Demonstrations And Simulations With MATLAB, And Other Third Party Software.

Introduction to Linear Algebra


Gilbert Strang - 1993
    Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.

Partial Differential Equations


Lawrence C. Evans - 1998
    

Before the Big Bang


John Gribbin - 2015
    Before the Big Bang, there was a tiny fraction of a second during which a process called inflation expanded a seed much smaller than the nucleus of an atom into a fireball the size of a basketball -- the Big Bang itself. From this fireball, the Universe as we know it developed. The origin of the seed from which the Universe began is not known with certainty, but as John Gribbin explains the most likely explanation is that it was a fluctuation of quantum energy in an eternal sea of cosmic energy. And that means that other seeds must surely have inflated to become other universes, bubbles in the cosmic sea. It is even possible that a collision between our universe and another bubble on the sea of eternity may have left an imprint on the cosmic background radiation, the echo of the Big Bang itself. John Gribbin is an award winning science writer best known for his book In Search of Schrodinger's Cat. He studied astrophysics under Fred Hoyle in Cambridge, and is now a Visiting Fellow in Astronomy at the University of Sussex.