Book picks similar to
Quantum Mechanics, Vol. 2 by Albert Messiah
physics
physics-and-math
text--science--reference
Schaum's Outline of Differential Equations
Richard Bronson - 2006
Thoroughly updated, this edition offers new, faster techniques for solving differential equations generated by the emergence of high-speed computers.
Sun in a Bottle: The Strange History of Fusion and the Science of Wishful Thinking
Charles Seife - 2008
When weapons builders detonated the first hydrogen bomb in 1952, they tapped into the vastest source of energy in our solar system--the very same phenomenon that makes the sun shine. Nuclear fusion was a virtually unlimited source of power that became the center of a tragic and comic quest that has left scores of scientists battered and disgraced. For the past half-century, governments and research teams have tried to bottle the sun with lasers, magnets, sound waves, particle beams, and chunks of metal, have struggled to harness the power of fusion. (The latest venture, a giant, multi-billion-dollar, international fusion project called ITER, is just now getting underway.) Again and again, they have failed, disgracing generations of scientists. Throughout this fascinating journey Charles Seife introduces us to the daring geniuses, villains, and victims of fusion science: the brilliant and tortured Andrei Sakharov; the monomaniacal and Strangelovean Edward Teller; Ronald Richter, the secretive physicist whose lies embarrassed an entire country; and Stanley Pons and Martin Fleischmann, the two chemists behind the greatest scientific fiasco of the past hundred years. Sun in a Bottle is the first major book to trace the story of fusion from its beginnings into the 21st century, of how scientists have gotten burned by trying to harness the power of the sun.
The Large Scale Structure of Space-Time
Stephen Hawking - 1973
These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.
A Student's Guide to Maxwell's Equations
Daniel Fleisch - 2007
In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.
An Introduction to Thermal Physics
Daniel V. Schroeder - 1999
Part I introduces concepts of thermodynamics and statistical mechanics from a unified view. Parts II and III explore further applications of classical thermodynamics and statistical mechanics. Throughout, the emphasis is on real-world applications.
In Search of the Ultimate Building Blocks
Gerard 't Hooft - 1992
Gerard 't Hooft was closely involved in many of the advances in modern theoretical physics that led to improved understanding of elementary particles, and this is a first-hand account of one of the most creative and exciting periods of discovery in the history of physics. Using language a layperson can understand, this narrative touches on many central topics and ideas, such as quarks and quantum physics; supergravity, superstrings and superconductivity; the Standard Model and grand unification; eleven-dimensional space time and black holes. This fascinating personal account of the past thirty years in one of the most dramatic areas in twentieth-century physics will be of interest to professional physicists and physics students, as well as the educated general reader with an interest in one of the most exciting scientific detective stories ever.
Physics and Beyond: Encounters and Conversations
Werner Heisenberg - 1969
Physics and Beyond contains Heisenberg’s most sophisticated statements of his philosophy of quantum theory, and is also a watershed inspiration for the contemporary pragmatist philosophy of science that prevails in academia today.
The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions
Shing-Tung Yau - 2010
According to theorists, the missing six are curled up in bizarre structures known as Calabi-Yau manifolds. In The Shape of Inner Space, Shing-Tung Yau, the man who mathematically proved that these manifolds exist, argues that not only is geometry fundamental to string theory, it is also fundamental to the very nature of our universe.Time and again, where Yau has gone, physics has followed. Now for the first time, readers will follow Yau’s penetrating thinking on where we’ve been, and where mathematics will take us next. A fascinating exploration of a world we are only just beginning to grasp, The Shape of Inner Space will change the way we consider the universe on both its grandest and smallest scales.
How to Teach Relativity to Your Dog
Chad Orzel - 2012
But what about relativity?
Physics professor Chad Orzel and his inquisitive canine companion, Emmy, tackle the concepts of general relativity in this irresistible introduction to Einstein’s physics. Through armchair ”and sometimes passenger-seat” conversations with Emmy about the relative speeds of dog and cat motion or the logistics of squirrel-chasing, Orzel translates complex Einsteinian ideas, i.e., ”the slowing of time for a moving observer, the shrinking of moving objects, the effects of gravity on light and time, black holes, the Big Bang, and of course, E=mc2” into examples simple enough for a dog to understand.A lively romp through one of the great theories of modern physics, How to Teach Relativity to Your Dog will teach you everything you ever wanted to know about space, time, and anything else you might have slept through in high school physics class.
The New Science of Strong Materials: Or Why You Don't Fall Through the Floor
J.E. Gordon - 1975
E. Gordon's classic introduction to the properties of materials used in engineering answers some fascinating and fundamental questions about how the structural world around us works. Gordon focuses on so-called strong materials--such as metals, wood, ceramics, glass, and bone--explaining in engaging and accessible terms the unique physical and chemical basis for their inherent structural qualities. He also shows how an in-depth understanding of these materials' intrinsic strengths--and weaknesses--guides our engineering choices, allowing us to build the structures that support our society. This work is an enduring example of first-rate scientific communication. Philip Ball's introduction describes Gordon's career and the impact of his innovations in materials research, while also discussing how the field has evolved since Gordon wrote this enduring example of first-rate scientific communication.
The Poincaré Conjecture: In Search of the Shape of the Universe
Donal O'Shea - 2007
He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincare conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point.Poincare's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award.In telling the vibrant story of The Poincare Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.
Letters to a Young Mathematician
Ian Stewart - 2006
Subjects ranging from the philosophical to the practical--what mathematics is and why it's worth doing, the relationship between logic and proof, the role of beauty in mathematical thinking, the future of mathematics, how to deal with the peculiarities of the mathematical community, and many others--are dealt with in Stewart's much-admired style, which combines subtle, easygoing humor with a talent for cutting to the heart of the matter. In the tradition of G.H. Hardy's classic A Mathematician's Apology, this book is sure to be a perennial favorite with students at all levels, as well as with other readers who are curious about the frequently incomprehensible world of mathematics.
Quantum Mechanics: Concepts and Applications
Nouredine Zettili - 2001
It combines the essential elements of the theory with the practical applications. Containing many examples and problems with step-by-step solutions, this cleverly structured text assists the reader in mastering the machinery of quantum mechanics. * A comprehensive introduction to the subject * Includes over 65 solved examples integrated throughout the text * Includes over 154 fully solved multipart problems * Offers an indepth treatment of the practical mathematical tools of quantum mechanics * Accessible to teachers as well as students
Mathematics of Classical and Quantum Physics
Frederick W. Byron Jr. - 1969
Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.
Symmetry and the Beautiful Universe
Leon M. Lederman - 2004
They write f