Best of
Physics

2012

Our Mathematical Universe: My Quest for the Ultimate Nature of Reality


Max Tegmark - 2012
    Our Big Bang, our distant future, parallel worlds, the sub-atomic and intergalactic - none of them are what they seem. But there is a way to understand this immense strangeness - mathematics. Seeking an answer to the fundamental puzzle of why our universe seems so mathematical, Tegmark proposes a radical idea: that our physical world not only is described by mathematics, but that it is mathematics. This may offer answers to our deepest questions: How large is reality? What is everything made of? Why is our universe the way it is?Table of ContentsPreface 1 What Is Reality? Not What It Seems • What’s the Ultimate Question? • The Journey Begins Part One: Zooming Out 2 Our Place in Space Cosmic Questions • How Big Is Space? • The Size of Earth • Distance to the Moon • Distance to the Sun and the Planets • Distance to the Stars • Distance to the Galaxies • What Is Space? 3 Our Place in TimeWhere Did Our Solar System Come From? • Where Did theGalaxies Come From? • Where Did the Mysterious MicrowavesCome From? • Where Did the Atoms Come From? 4 Our Universe by NumbersWanted: Precision Cosmology • Precision Microwave-Background Fluctuations • Precision Galaxy Clustering • The Ultimate Map of Our Universe • Where Did Our Big Bang Come From? 5 Our Cosmic Origins What’s Wrong with Our Big Bang? • How Inflation Works • The Gift That Keeps on Giving • Eternal Inflation 6 Welcome to the Multiverse The Level I Multiverse • The Level II Multiverse • Multiverse Halftime Roundup Part Two: Zooming In 7 Cosmic Legos Atomic Legos • Nuclear Legos • Particle-Physics Legos • Mathematical Legos • Photon Legos • Above the Law? • Quanta and Rainbows • Making Waves • Quantum Weirdness • The Collapse of Consensus • The Weirdness Can’t Be Confined • Quantum Confusion 8 The Level III Multiverse The Level III Multiverse • The Illusion of Randomness • Quantum Censorship • The Joys of Getting Scooped • Why Your Brain Isn’t a Quantum Computer • Subject, Object and Environment • Quantum Suicide • Quantum Immortality? • Multiverses Unified • Shifting Views: Many Worlds or Many Words? Part Three: Stepping Back 9 Internal Reality, External Reality and Consensus Reality External Reality and Internal Reality • The Truth, the Whole Truth and Nothing but the Truth • Consensus Reality • Physics: Linking External to Consensus Reality 10 Physical Reality and Mathematical Reality Math, Math Everywhere! • The Mathematical Universe Hypothesis • What Is a Mathematical Structure? 11 Is Time an Illusion? How Can Physical Reality Be Mathematical? • What Are You? • Where Are You? (And What Do You Perceive?) • When Are You? 12 The Level IV Multiverse Why I Believe in the Level IV Multiverse • Exploring the Level IV Multiverse: What’s Out There? • Implications of the Level IV Multiverse • Are We Living in a Simulation? • Relation Between the MUH, the Level IV Multiverse and Other Hypotheses •Testing the Level IV Multiverse 13 Life, Our Universe and Everything How Big Is Our Physical Reality? • The Future of Physics • The Future of Our Universe—How Will It End? • The Future of Life •The Future of You—Are You Insignificant? Acknowledgments Suggestions for Further Reading Index

Life's Ratchet: How Molecular Machines Extract Order from Chaos


Peter M. Hoffmann - 2012
    But molecules, such as water and sugar, are not alive. So how do our cells--assemblies of otherwise "dead" molecules--come to life, and together constitute a living being? In "Life's Ratchet," physicist Peter M. Hoffmann locates the answer to this age-old question at the nanoscale. The complex molecules of our cells can rightfully be called "molecular machines," or "nanobots"; these machines, unlike any other, work autonomously to create order out of chaos. Tiny electrical motors turn electrical voltage into motion, tiny factories custom-build other molecular machines, and mechanical machines twist, untwist, separate and package strands of DNA. The cell is like a city--an unfathomable, complex collection of molecular worker bees working together to create something greater than themselves. Life, Hoffman argues, emerges from the random motions of atoms filtered through the sophisticated structures of our evolved machinery. We are essentially giant assemblies of interacting nanoscale machines; machines more amazing than can be found in any science fiction novel. Incredibly, the molecular machines in our cells function without a mysterious "life force," nor do they violate any natural laws. Scientists can now prove that life is not supernatural, and that it can be fully understood in the context of science. Part history, part cutting-edge science, part philosophy, "Life's Ratchet" takes us from ancient Greece to the laboratories of modern nanotechnology to tell the story of our quest for the machinery of life.

Mysteries of Modern Physics: Time


Sean Carroll - 2012
    From the rising and setting of the sun to the cycles of nature, the thought processes in our brains, and the biorhythms in our day, nothing so pervades our existence and yet is so difficult to explain. Time seems to be woven into the very fabric of the universe. But why? Consider these contrasting views of time: A movie of a person diving into a pool has an obvious arrow of time. When the movie is played backward, everyone recognizes that it shows an event that would never occur in the real world. But zoom in on any part of this scene at the atomic scale and the movie can be run backward or forward and be indistinguishable. Either way, the particle interactions are consistent with the laws of physics. Why does one movie have an arrow of time moving in only one direction and the other does not? Surprisingly, the search for an answer leads through some of the most pioneering fields of physics, including thermodynamics, relativity, quantum theory, and cosmology. The key concept is called "entropy," which is related to the second law of thermodynamics, considered by many scientists to be the most secure law in all of physics. But that's only the beginning, since the quest for the ultimate theory of time draws on such exciting ideas as black holes, cosmic inflation, and dark energy, before closing in on a momentous question that until recently was considered unanswerable: What happened before the big bang? In 24 riveting half-hour lectures, Mysteries of Modern Physics: Time takes you on a mind-expanding journey through the past, present, and future, guided by Professor Sean Carroll, noted author and Senior Research Associate in Physics at the California Institute of Technology.

A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity


Peter Collier - 2012
    This user-friendly self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. The book is written using straightforward and accessible language, with clear derivations and explanations as well as numerous fully solved problems. For those with minimal mathematical background, the first chapter provides a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes and relativistic cosmology. Following the historic 2015 LIGO (Laser Interferometer Gravitational-Wave Observatory) detection, there is now an additional chapter on gravitational waves, ripples in the fabric of spacetime that potentially provide a revolutionary new way to study the universe. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes.Understand even the basics of Einstein's amazing theory and the world will never seem the same again. ContentsPrefaceIntroduction1 Foundation mathematics2 Newtonian mechanics3 Special relativity4 Introducing the manifold5 Scalars, vectors, one-forms and tensors6 More on curvature7 General relativity8 The Newtonian limit9 The Schwarzschild metric10 Schwarzschild black holes11 Cosmology12 Gravitational wavesAppendix: The Riemann curvature tensorBibliographyAcknowledgementsJanuary 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.

The Particle at the End of the Universe: How the Hunt for the Higgs Boson Leads Us to the Edge of a New World


Sean Carroll - 2012
    It had to be found. But projects as big as CERN’s Large Hadron Collider don’t happen without incredible risks – and occasional skullduggery. In the definitive account of this landmark event, Caltech physicist and acclaimed science writer Sean Carroll reveals the insights, rivalry, and wonder that fuelled the Higgs discovery, and takes us on a riveting and irresistible ride to the very edge of physics today.

A Cultural History of Physics


Karoly Simonyi - 2012
    P. Snow delivered his famous 1959 lecture, "The Two Cultures."In A Cultural History of Physics, Hungarian scientist and educator Karoly Simonyi succeeds in bridging this chasm by describing the experimental methods and theoretical interpretations that created scientific knowledge, from ancient times to the present day, within the cultural environment in which it was formed. Unlike any other work of its kind, Simonyi's seminal opus explores the interplay of science and the humanities to convey the wonder and excitement of scientific development throughout the ages.These pages contain an abundance of excerpts from original resources, a wide array of clear and straightforward explanations, and an astonishing wealth of insight, revealing the historical progress of science and inviting readers into a dialogue with the great scientific minds that shaped our current understanding of physics.Beautifully illustrated, accurate in its scientific content and broad in its historical and cultural perspective, this book will be a valuable reference for scholars and an inspiration to aspiring scientists and humanists who believe that science is an integral part of our culture.

Emergent Multiverse: Quantum Theory According to the Everett Interpretation


David Wallace - 2012
    The point of science, it is generally accepted, is to tell us how the world works and what it is like. But quantum theory seems to fail to do this: taken literally as a theory of the world, it seems to make crazy claims: particles are in two places at once; cats are alive and dead at the same time. So physicists and philosophers have often been led either to give up on the idea that quantum theory describes reality, or to modify or augment the theory. The Everett interpretation of quantum mechanics takes the apparent craziness seriously, and asks, "what would it be like if particles really were in two places at once, if cats really were alive and dead at the same time?" The answer, it turns out, is that if the world were like that--if it were as quantum theory claims--it would be a world that, at the macroscopic level, was constantly branching into copies--hence the more sensationalist name for the Everett interpretation, the "many worlds theory." But really, the interpretation is not sensationalist at all: it simply takes quantum theory seriously, literally, as a description of the world. Once dismissed as absurd, it is now accepted by many physicists as the best way to make coherent sense of quantum theory. David Wallace offers a clear and up-to-date survey of work on the Everett interpretation in physics and in philosophy of science, and at the same time provides a self-contained and thoroughly modern account of it--an account which is accessible to readers who have previously studied quantum theory at undergraduate level, and which will shape the future direction of research by leading experts in the field.

Philosophy of Physics: Space and Time


Tim Maudlin - 2012
    Maudlin explains special relativity using a geometrical approach, emphasizing intrinsic space-time structure rather than coordinate systems or reference frames. He gives readers enough detail about special relativity to solve concrete physical problems while presenting general relativity in a more qualitative way, with an informative discussion of the geometrization of gravity, the bending of light, and black holes. Additional topics include the Twins Paradox, the physical aspects of the Lorentz-FitzGerald contraction, the constancy of the speed of light, time travel, the direction of time, and more.Introduces nonphysicists to the philosophical foundations of space-time theoryProvides a broad historical overview, from Aristotle to EinsteinExplains special relativity geometrically, emphasizing the intrinsic structure of space-timeCovers the Twins Paradox, Galilean relativity, time travel, and moreRequires only basic algebra and no formal knowledge of physicsTim Maudlin is professor of philosophy at New York University. His books include The Metaphysics within Physics and Quantum Non-Locality and Relativity.

Revolutions in Twentieth-Century Physics


David J. Griffiths - 2012
    Exploring the four pillars of modern physics - relativity, quantum mechanics, elementary particles and cosmology - this clear and lively account will interest anyone who has wondered what Einstein, Bohr, Schr�dinger and Heisenberg were really talking about. The book discusses quarks and leptons, antiparticles and Feynman diagrams, curved space-time, the Big Bang and the expanding Universe. Suitable for undergraduate students in non-science as well as science subjects, it uses problems and worked examples to help readers develop an understanding of what recent advances in physics actually mean.

Conquering the Physics GRE


Yoni Kahn - 2012
    

A General Relativity Workbook


Thomas A. Moore - 2012
    The unique workbook-based design fosters active-learning by explaining key concepts before guiding students through working out the processes. More than 350 additional problems support students' learning.

Lectures on Quantum Mechanics


Steven Weinberg - 2012
    Ideally suited to a one-year graduate course, this textbook is also a useful reference for researchers. Readers are introduced to the subject through a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach. The textbook covers many topics not often found in other books on the subject, including alternatives to the Copenhagen interpretation, Bloch waves and band structure, the Wigner–Eckart theorem, magic numbers, isospin symmetry, the Dirac theory of constrained canonical systems, general scattering theory, the optical theorem, the 'in-in' formalism, the Berry phase, Landau levels, entanglement and quantum computing. Problems are included at the ends of chapters, with solutions available for instructors at www.cambridge.org/9781107028722.

The Eternal Law: Ancient Greek Philosophy, Modern Physics, and Ultimate Reality


John H. Spencer - 2012
    

National Geographic Exploring Space


National Geographic Society - 2012
    

Khan's Lectures: Handbook of the Physics of Radiation Therapy


Faiz M. Khan - 2012
    Lectures will be presented somewhat similar to a PowerPoint format, discussing key points of individual chapters. Selected diagrams from the textbook will be used to initiate the discussion. New illustrations will used, wherever needed, to enhance the understanding of important concepts. Discussion will be condensed and often bulleted. Theoretical details will be referred to the textbook and the cited literature. A problem set (practice questions) will be provided at the end of each chapter topic.

Modern Electrodynamics


Andrew Zangwill - 2012
    Charged particles in vacuum and the electrodynamics of continuous media are given equal attention in discussions of electrostatics, magnetostatics, quasistatics, conservation laws, wave propagation, radiation, scattering, special relativity, and field theory. Extensive use of qualitative arguments similar to those used by working physicists makes Modern Electrodynamics a must-have for every student of this subject. In 24 chapters, the textbook covers many more topics than can be presented in a typical two-semester course, making it easy for instructors to tailor courses to their specific needs. Close to 120 worked examples and 80 applications boxes help the reader build physical intuition and develop technical skill. Nearly 600 end-of-chapter homework problems encourage students to engage actively with the material. A solutions manual is available for instructors at www.cambridge.org/Zangwill.

Inside the Metal Detector: The First In-depth Book on Metal Detector Technology Since 1927


George Overton - 2012
    

Supergravity


Daniel Z. Freedman - 2012
    Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers. A website hosted by the authors, featuring solutions to some exercises and additional reading material, can be found at www.cambridge.org/supergravity.

Lectures on Quantum Mechanics and Relativistic Field Theory


P.A.M. Dirac - 2012
    Exact facsimile of the original edition, not reproduced with Optical Recognition Software. Dirac is widely regarded as one of the world's greatest physicists. He was one of the founders of quantum mechanics and quantum electrodynamics. His early contributions include the modern operator calculus for quantum mechanics, which he called transformation theory, and an early version of the path integral. His relativistic wave equation for the electron was the first successful attack on the problem of relativistic quantum mechanics. Dirac founded quantum field theory with his reinterpretation of the Dirac equation as a many-body equation, which predicted the existence of antimatter and matter-antimatter annihilation. He was the first to formulate quantum electrodynamics, although he could not calculate arbitrary quantities because the short distance limit requires renormalization. Dirac discovered the magnetic monopole solutions, the first topological configuration in physics, and used them to give the modern explanation of charge quantization. He developed constrained quantization in the 1960s, identifying the general quantum rules for arbitrary classical systems. These lectures were given delivered and published during his tenure at Princeton's Institute for Advanced Study in the 1930's.

Introduction to Many-Body Physics


Piers Coleman - 2012
    Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.

A Student's Guide to Einstein's Major Papers


Robert E. Kennedy - 2012
    In a single year, 1905, Einstein produced breakthrough works in three areas of physics: on the size and the effects of atoms; on the quantization of the electromagnetic field; and on the special theory of relativity. In 1916 heproduced a fourth breakthrough work, the general theory of relativity.A Student's Guide to Einstein's Major Papers focuses on Einstein's contributions, setting his major works into their historical context, and then takes the reader through the details of each paper, including the mathematics.This book helps the reader appreciate the simplicity and insightfulness of Einstein's ideas and how revolutionary his work was, and locate it in the evolution of scientific thought begun by the ancient Greek natural philosophers.

The Everett Interpretation of Quantum Mechanics: Collected Works 1955-1980 with Commentary


Jeffrey Alan Barrett - 2012
    Although counterintuitive, Everett's revolutionary formulation of quantum mechanics offers the most direct solution to the infamous quantum measurement problem--that is, how and why the singular world of our experience emerges from the multiplicities of alternatives available in the quantum world. The many-worlds interpretation postulates the existence of multiple universes. Whenever a measurement-like interaction occurs, the universe branches into relative states, one for each possible outcome of the measurement, and the world in which we find ourselves is but one of these many, but equally real, possibilities. Everett's challenge to the orthodox interpretation of quantum mechanics was met with scorn from Niels Bohr and other leading physicists, and Everett subsequently abandoned academia to conduct military operations research. Today, however, Everett's formulation of quantum mechanics is widely recognized as one of the most controversial but promising physical theories of the last century.In this book, Jeffrey Barrett and Peter Byrne present the long and short versions of Everett's thesis along with a collection of his explanatory writings and correspondence. These primary source documents, many of them newly discovered and most unpublished until now, reveal how Everett's thinking evolved from his days as a graduate student to his untimely death in 1982. This definitive volume also features Barrett and Byrne's introductory essays, notes, and commentary that put Everett's extraordinary theory into historical and scientific perspective and discuss the puzzles that still remain.

A History of Optics from Greek Antiquity to the Nineteenth Century


Olivier Darrigol - 2012
    It shows how light gradually became the central entity of a domain of physics that no longer referred to the functioning of the eye; it retraces thesubsequent competition between medium-based and corpuscular concepts of light; and it details the nineteenth-century flourishing of mechanical ether theories. The author critically exploits and sometimes completes the more specialized histories that have flourished in the past few years. Theresulting synthesis brings out the actors' long-term memory, their dependence on broad cultural shifts, and the evolution of disciplinary divisions and connections. Conceptual precision, textual concision, and abundant illustration make the book accessible to a broad variety of readers interested inthe origins of modern optics.

Biophysics: Searching for Principles


William Bialek - 2012
    For a new generation of physicists, the phenomena of life pose exciting challenges to physics itself, and biophysics has emerged as an important subfield of this discipline. Here, William Bialek provides the first graduate-level introduction to biophysics aimed at physics students.Bialek begins by exploring how photon counting in vision offers important lessons about the opportunities for quantitative, physics-style experiments on diverse biological phenomena. He draws from these lessons three general physical principles--the importance of noise, the need to understand the extraordinary performance of living systems without appealing to finely tuned parameters, and the critical role of the representation and flow of information in the business of life. Bialek then applies these principles to a broad range of phenomena, including the control of gene expression, perception and memory, protein folding, the mechanics of the inner ear, the dynamics of biochemical reactions, and pattern formation in developing embryos.Featuring numerous problems and exercises throughout, "Biophysics" emphasizes the unifying power of abstract physical principles to motivate new and novel experiments on biological systems. Covers a range of biological phenomena from the physicist's perspective Features 200 problems Draws on statistical mechanics, quantum mechanics, and related mathematical concepts Includes an annotated bibliography and detailed appendixes Instructor's manual (available only to teachers)

Higgs Force: Cosmic Symmetry Shattered


Nicholas Mee - 2012
    The story takes us on a journey through many of the most important scientific discoveries in history before bringing us right up to date with the discovery of the Higgs Particle in July 2012.

An Introduction to Celestial Mechanics


Richard Fitzpatrick - 2012
    Building on advanced topics in classical mechanics such as rigid body rotation, Langrangian mechanics, and orbital perturbation theory, this text has been written for advanced undergraduates and beginning graduate students in astronomy, physics, mathematics, and related fields. Specific topics covered include Keplerian orbits, the perihelion precession of the planets, tidal interactions between the Earth, Moon, and Sun, the Roche radius, the stability of Lagrange points in the three-body problem, and lunar motion. More than 100 exercises allow students to gauge their understanding, and a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher level treatments.

Newton's Gravity: An Introductory Guide to the Mechanics of the Universe


Douglas W. Macdougal - 2012
    Many people, for example, know the tides are caused by the pull of the Moon and to a lesser extent the Sun. But very few can explain exactly how and why that happens. Fewer still can calculate the actual pulls of the Moon and Sun on the oceans. This book shows in clear detail how to do this with simple tools. It uniquely crosses disciplines - history, astronomy, physics and mathematics - and takes pains to explain things frequently passed over or taken for granted in other books. Using a problem-based approach, "Newton's Gravity" explores the surprisingly basic mathematics behind gravity, the most fundamental force that governs the movements of satellites, planets, and the stars.Author Douglas W. MacDougal uses actual problems from the history of astronomy, as well as original examples, to deepen understanding of how discoveries were made and what they mean. "Newton's Gravity" concentrates strongly on the development of the science of orbital motion, beginning with Galileo, Kepler, and Newton, each of whom is prominently represented. Quotes and problems from Galileo's Dialogs Concerning Two New Sciences and particularly Newton's Principia help the reader get inside the mind of those thinkers and see the problems as they saw them, and experience their concise and typically eloquent writing.This book enables students and curious minds to explore the mysteries of celestial motion without having to know advanced mathematics. It will whet the reader's curiosity to explore further and provide him or her the tools (mathematical or physical) to do so.

Laws, Language and Life: Howard Pattee S Classic Papers on the Physics of Symbols with Contemporary Commentary


Howard Hunt Pattee - 2012
    By extending von Neumann's logical requirements for self-replication, to the physical requirements of symbolic instruction at the molecular level, he concludes that a form of quantum measurement is necessary for life. He explains why all non-dynamic symbolic and informational controls act as special (allosteric) constraints on dynamical systems. Pattee also points out that symbols do not exist in isolation but in coordinated symbol systems we call languages. Such insights turn out to be necessary to situate biosemiotics as an objective scientific endeavor. By proposing a way to relate quiescent symbolic constraints to dynamics, Pattee's work builds a bridge between physical, biological, and psychological models that are based on dynamical systems theory. Pattee's work awakes new interest in cognitive scientists, where his recognition of the necessary separation-the epistemic cut-between the subject and object provides a basis for a complementary third way of relating the purely symbolic, computational models of cognition and the purely dynamic, non-representational models. This selection of Pattee's papers also addresses several other fields, including hierarchy theory, artificial life, self-organization, complexity theory, and the complementary epistemologies of the physical and biological sciences.

A Computable Universe: Understanding and Exploring Nature as Computation


Hector Zenil - 2012
    

Orbital Mechanics


John E. Prussing - 2012
    Prussing and Bruce A. Conway has been the most authoritative textbook on space trajectories and orbital transfers.Completely revised and updated, this edition provides:* Current data and statistics, along with coverage of new research and the most recent developments in the field* Three new chapters: "The Three-Body Problem" (Ch. 4), "Continuous-Thrust Transfer" (Ch. 8), and "Canonical Systems and the Lagrange Equations" (Ch. 12)* New material on multiple-revolution Lambert solutions, gravity-assist applications, and the state transition matrix for a general conic orbit* New examples and problems throughout* A new Companion Website with PowerPoint slides (www.oup.com/us/prussing)

Quantum Mechanics: Theory and Experiment


Mark F. Beck - 2012
    It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism.The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework.Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mathematics of a relatively simple system, before moving on to more complicated systems. After describing polarization, the text goes on to describe spin systems, time evolution, continuous variable systems (particle in a box, harmonic oscillator, hydrogen atom, etc.), and perturbation theory.The book also includes chapters which describe material that is frequently absent from undergraduate texts: quantum measurement, entanglement, quantum field theory and quantum information. This material is connected not only to the laboratories described in the text, but also to other recent experiments. Other subjects covered that do not often make their way into undergraduate texts are coherence, complementarity, mixed states, the density operator and coherent states.Supplementary material includes further details about implementing the laboratories, including parts lists and software for running the experiments. Computer simulations of some of the experiments are available as well. A solutions manual for end-of-chapter problems is available to instructors.

Making Starships and Stargates: The Science of Interstellar Transport and Absurdly Benign Wormholes


James F. Woodward - 2012
    A less ambitious, but nonetheless revolutionary, goal is finding a way to accelerate a spaceship without having to lug along a gargantuan reservoir of fuel that you blow out a tailpipe. Tethers and solar sails are conventional realizations of the basic idea. There may now be a way to achieve these lofty objectives. Making Starships and Stargates will have three parts. The first will deal with information about the theories of relativity needed to understand the predictions of the effects that make possible the propulsion techniques, and an explanation of those techniques. The second will deal with experimental investigations into the feasibility of the predicted effects; that is, do the effects exist and can they be applied to propulsion? The third part of the book the most speculative will examine the question: what physics is needed if we are to make wormholes and warp drives? Is such physics plausible? And how might we go about actually building such devices? This book pulls all of that material together from various sources, updates and revises it, and presents it in a coherent form so that those interested will be able to find everything of relevance all in one place."

Do It Yourself Quantum Physics: Exploring the History, Theory, and Applications of Quantum Physics Through Hands-On Projects


David Prutchi - 2012
    Build an intuitive understanding of the principles behind quantum mechanics through practical construction and replication of original experimentsWith easy-to-acquire, low-cost materials and basic knowledge of algebra and trigonometry, "Exploring Quantum Physics through Hands-on Projects" takes readers step by step through the process of re-creating scientific experiments that played an essential role in the creation and development of quantum mechanics.Presented in near chronological order--from discoveries of the early twentieth century to new material on entanglement--this book includes question- and experiment-filled chapters on:Light as a WaveLight as ParticlesAtoms and RadioactivityThe Principle of Quantum PhysicsWave/Particle DualityThe Uncertainty PrincipleSchrodinger (and his Zombie Cat)EntanglementFrom simple measurements of Planck's constant to testing violations of Bell's inequalities using entangled photons, "Exploring Quantum Physics through Hands-on Projects" not only immerses readers in the process of quantum mechanics, it provides insight into the history of the field--how the theories and discoveries apply to our world not only today, but also tomorrow.By immersing readers in groundbreaking experiments that can be performed at home, school, or in the lab, this first-ever, hands-on book successfully demystifies the world of quantum physics for all who seek to explore it--from science enthusiasts and undergrad physics students to practicing physicists and engineers.

Curvature in Mathematics and Physics


Shlomo Sternberg - 2012
    It introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool. Prerequisites include linear algebra and advanced calculus. 2012 edition.

Gravity's Engines: How Bubble-Blowing Black Holes Rule Galaxies, Stars, and Life in the Cosmos


Caleb Scharf - 2012
    Often billions of times more massive than the Sun, they lurk in the inner sanctum of almost every galaxy of stars in the universe. They're mysterious chasms so destructive and unforgiving that not even light can escape their deadly wrath.Recent research, however, has led to a cascade of new discoveries that have revealed an entirely different side to black holes. As the astrophysicist Caleb Scharf reveals in Gravity's Engines, these chasms in space-time don't just vacuum up everything that comes near them; they also spit out huge beams and clouds of matter. Black holes blow bubbles.With clarity and keen intellect, Scharf masterfully explains how these bubbles profoundly rearrange the cosmos around them. Engaging with our deepest questions about the universe, he takes us on an intimate journey through the endlessly colorful place we call our galaxy and reminds us that the Milky Way sits in a special place in the cosmic zoo—a "sweet spot" of properties. Is it coincidental that we find ourselves here at this place and time? Could there be a deeper connection between the nature of black holes and their role in the universe and the phenomenon of life? We are, after all, made of the stuff of stars.

Computational Physics


Mark Newman - 2012
    Computers play a central role in virtually every major physics discovery today, from astrophysics and particle physics to biophysics and condensed matter. This book explains the fundamentals of computational physics and describes in simple terms the techniques that every physicist should know, such as finite difference methods, numerical quadrature, and the fast Fourier transform. The book offers a complete introduction to the topic at the undergraduate level, and is also suitable for the advanced student or researcher who wants to learn the foundational elements of this important field.

The Universal Order of Creation of Matters


M.T. Keshe - 2012
    One of the topics discussed in this book is that how Matter, Antimatter and Dark Matter are created in the universe. What scientists at present call elementary particles (like quarks and so on) are themselves in fact collections of smaller magnetic fields, which in group as dynamic plasmatic magnetic fields and their interactions with other dynamic plasmatic magnetic fields, lead to creation of quarks and so forth. Where in fact, what is called the mass of the quark, this in reality is created through the same method as the mass of any other object in the universe and is purely due to the interaction of constituent plasmatic magnetic fields within the center of the Matter. Through tests done, where separation of these Matters of plasma in reactors were achieved, and, by using the effects of the interaction of plasmatic magnetic fields of Antimatters within the cores of reactors forces of magnitudes were created which are unknown in todays' world of physics and industry.

Black Hole Astrophysics: The Engine Paradigm


David L. Meier - 2012
    This book first introduces the properties of simple isolated holes, then adds in complications like rotation, accretion, radiation, and magnetic fields, finally arriving at a basic understanding of how these immense engines work.Black Hole Astrophysicsreviews our current knowledge of cosmic black holes and how they generate the most powerful observed pheonomena in the Universe;highlights the latest, most up-to-date theories and discoveries in this very active area of astrophysical research;demonstrates why we believe that black holes are responsible for important phenomena such as quasars, microquasars and gammaray bursts;explains to the reader the nature of the violent and spectacular outfl ows (winds and jets) generated by black hole accretion.

First Steps in Differential Geometry: Riemannian, Contact, Symplectic


Andrew McInerney - 2012
    Emphasizes the consequences of a definition and the use of examples and constructions.

Dinosaurs. by Dan Green


Dan Green - 2012
    Packed with fun facts and memorable characters, this is an essential book for all dino enthusiasts.

Fundamentals of Thermal-Fluidsciences


Cengal a Yunus - 2012
    

The Nonlinear World: Conceptual Analysis and Phenomenology


Yoshitsugu Oono - 2012
    Starting with an analysis of chaos and randomness, it covers renormalization group theory, phenomena modeling, and how physicists can approach the study of biology.

Principles of Physics: For Scientists and Engineers


Hafez A. Radi - 2012
    It includes simple mathematical approaches to each physical principle, and all examples and exercises are selected carefully to reinforce each chapter. In addition, answers to all exercises are included that should ultimately help solidify the concepts in the minds of the students and increase their confidence in the subject. Many boxed features are used to separate the examples from the text and to highlight some important physical outcomes and rules. The appendices are chosen in such a way that all basic simple conversion factors, basic rules and formulas, basic rules of differentiation and integration can be viewed quickly, helping student to understand the elementary mathematical steps used for solving the examples and exercises.Instructors teaching form this textbook will be able to gain online access to the solutions manual which provides step-by-step solutions to all exercises contained in the book. The solutions manual also contains many tips, coloured illustrations, and explanations on how the solutions were derived.

Topics in the Foundations of General Relativity and Newtonian Gravitation Theory


David B. Malament - 2012
    Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is no criterion of orbital rotation in general relativity that fully answers to our classical intuitions. Topics is intended for both students and researchers in mathematical physics and philosophy of science.

Effective Theories in Physics: From Planetary Orbits to Elementary Particle Masses


James Wells - 2012
    The ideas of effective theories have been implicit in science for a long time, but have only been articulated well in the last few decades. Since Wilson's renormalization group revolution in the early 1970's, the science community has come to ... Full description

Classical Electromagnetism in a Nutshell


Anupam Kumar Garg - 2012
    While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems.Offers a complete treatment of classical electromagnetismEmphasizes physical ideasSeparates the treatment of electromagnetism in vacuum and material mediaPresents key formulas in both SI and Gaussian unitsCovers applications to other areas of physicsIncludes more than 300 problems

Basic Concepts of String Theory


Ralph Blumenhagen - 2012
    As such it is not a compendium of results but intended as textbook in the sense that most of the material is organized in a pedagogical and self-contained fashion. Beyond the basics, a number of more advanced topics are introduced, such as conformal field theory, superstrings and string dualities - the text does not cover applications to black hole physics and cosmology, nor strings theory at finite temperatures. End-of-chapter references have been added to guide the reader wishing to pursue further studies or to start research in well-defined topics covered by this book."