Concepts of Modern Mathematics


Ian Stewart - 1975
    Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

Mathematics and Its History


John Stillwell - 1997
    Even when dealing with standard material, Stillwell manages to dramatize it and to make it worth rethinking. In short, his book is a splendid addition to the genre of works that build royal roads to mathematical culture for the many." (Mathematical Intelligencer)This second edition includes new chapters on Chinese and Indian number theory, on hypercomplex numbers, and on algebraic number theory. Many more exercises have been added, as well as commentary to the exercises explaining how they relate to the preceding section, and how they foreshadow later topics.

Schaum's Outline of Linear Algebra


Seymour Lipschutz - 1968
    This guide provides explanations of eigenvalues, eigenvectors, linear transformations, linear equations, vectors, and matrices.

Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering


Steven H. Strogatz - 1994
    The presentation stresses analytical methods, concrete examples, and geometric intuition. A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.About the Author:Steven Strogatz is in the Center for Applied Mathematics and the Department of Theoretical and Applied Mathematics at Cornell University. Since receiving his Ph.D. from Harvard university in 1986, Professor Strogatz has been honored with several awards, including the E.M. Baker Award for Excellence, the highest teaching award given by MIT.

Analysis I


Terence Tao - 2006
    

Course of Theoretical Physics: Vol. 1, Mechanics


L.D. Landau - 1969
    The exposition is simple and leads to the most complete direct means of solving problems in mechanics. The final sections on adiabatic invariants have been revised and augmented. In addition a short biography of L D Landau has been inserted.

Understanding Analysis


Stephen Abbott - 2000
    The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination.

Introduction to Quantum Mechanics


David J. Griffiths - 1994
    The book s two-part coverage organizes topics under basic theory, and assembles an arsenal of approximation schemes with illustrative applications. For physicists and engineers. "

Mathematical Methods for Physicists


George B. Arfken - 1970
    This work includes differential forms and the elegant forms of Maxwell's equations, and a chapter on probability and statistics. It also illustrates and proves mathematical relations.

Modern Quantum Mechanics


J.J. Sakurai - 1985
    DLC: Quantum theory.

Elementary Number Theory and Its Applications


Kenneth H. Rosen - 1984
    The Fourth Edition builds on this strength with new examples, additional applications and increased cryptology coverage. Up-to-date information on the latest discoveries is included.Elementary Number Theory and Its Applications provides a diverse group of exercises, including basic exercises designed to help students develop skills, challenging exercises and computer projects. In addition to years of use and professor feedback, the fourth edition of this text has been thoroughly accuracy checked to ensure the quality of the mathematical content and the exercises.

Mathematics: A Very Short Introduction


Timothy Gowers - 2002
    The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understandingof paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questionsabout the mathematical community (such as Is it true that mathematicians burn out at the age of 25?) It is the ideal introduction for anyone who wishes to deepen their understanding of mathematics.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundredsof key topics, from philosophy to Freud, quantum theory to Islam.

Quantum Mechanics: The Theoretical Minimum


Leonard Susskind - 2014
    Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics.In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course.An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

Here's Looking at Euclid: A Surprising Excursion Through the Astonishing World of Math


Alex Bellos - 2010
    But, Alex Bellos says, "math can be inspiring and brilliantly creative. Mathematical thought is one of the great achievements of the human race, and arguably the foundation of all human progress. The world of mathematics is a remarkable place."Bellos has traveled all around the globe and has plunged into history to uncover fascinating stories of mathematical achievement, from the breakthroughs of Euclid, the greatest mathematician of all time, to the creations of the Zen master of origami, one of the hottest areas of mathematical work today. Taking us into the wilds of the Amazon, he tells the story of a tribe there who can count only to five and reports on the latest findings about the math instinct--including the revelation that ants can actually count how many steps they've taken. Journeying to the Bay of Bengal, he interviews a Hindu sage about the brilliant mathematical insights of the Buddha, while in Japan he visits the godfather of Sudoku and introduces the brainteasing delights of mathematical games.Exploring the mysteries of randomness, he explains why it is impossible for our iPods to truly randomly select songs. In probing the many intrigues of that most beloved of numbers, pi, he visits with two brothers so obsessed with the elusive number that they built a supercomputer in their Manhattan apartment to study it. Throughout, the journey is enhanced with a wealth of intriguing illustrations, such as of the clever puzzles known as tangrams and the crochet creation of an American math professor who suddenly realized one day that she could knit a representation of higher dimensional space that no one had been able to visualize. Whether writing about how algebra solved Swedish traffic problems, visiting the Mental Calculation World Cup to disclose the secrets of lightning calculation, or exploring the links between pineapples and beautiful teeth, Bellos is a wonderfully engaging guide who never fails to delight even as he edifies. "Here's Looking at Euclid "is a rare gem that brings the beauty of math to life.

Linear Algebra Done Right


Sheldon Axler - 1995
    The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.