Physical Chemistry: A Molecular Approach


Donald A. McQuarrie - 1997
    It covers all relevant areas, including molecular spectroscopy, electronic structure computations, molecular beam methods and time-resolved measurements of chemical systems.

Chemistry


Steven S. Zumdahl - 1986
    They bring a conceptual approach to chemistry and integrate problem-solving skills throughout, helping students transition from theory to practice. A strong emphasis on models, real-world applications, and visual learning prevails throughout the text. The Seventh Edition seamlessly integrates the strengths of the Zumdahl approach through a comprehensive and interwoven print and technology program. Enhanced Sample Exercises, online homework problems, and Classroom Response System content help instructors assess conceptual understanding and problem-solving skills, while new animations and images support visual learning. In addition, Houghton Mifflin offers implementation services through our TeamUP program to help instructors and students get the most out of the text and its supplements.

Organic Chemistry: Structure and Function


K. Peter C. Vollhardt - 1987
    By emphasizing the relationship between structure and function, the authors provide a framework for understanding mechanisms and reactions. Stressing the importance of synthetic strategies and biological and industrial applications, the text introduces students to real chemistry as it is actually practised. This fourth edition offers significant updates in coverage and learning tools and enhanced media support at the book's companion website.

Biochemistry


Jeremy M. Berg - 1975
    In the new edition of Biochemistry, instructors will see the all the hallmark features that made this a consistent bestseller for the undergraduate biochemistry course: exceptional clarity and concision, a more biological focus, cutting-edge content, and an elegant, uncluttered design.  Accomplished in both the classroom and the laboratory, coauthors Jeremy Berg and John Tymoczko draw on the field's dynamic research to illustrate its fundamental ideas.

Organic Chemistry


David R. Klein - 2011
    Where did I go wrong?" Most instructors hear this complaint every year. In many cases, it is true that the student invested countless hours, only to produce abysmal results. Often, inefficient study habits are to blame. The important question is: why do so many students have difficulty preparing themselves for organic chemistry exams? There are certainly several factors at play here, but perhaps the most dominant factor is a fundamental disconnect between what students learn and the tasks expected of them. To address the disconnect in organic chemistry instruction, David Klein has developed a textbook that utilizes a skills-based approach to instruction. The textbook includes all of the concepts typically covered in an organic chemistry textbook, but special emphasis is placed on skills development to support these concepts. This emphasis upon skills development will provide students with a greater opportunity to develop proficiency in the key skills necessary to succeed in organic chemistry.As an example, resonance structures are used repeatedly throughout the course, and students must become masters of resonance structures early in the course. Therefore, a significant portion of chapter 1 is devoted to drawing resonance structures.Two chapters (6 and 12) are devoted almost entirely to skill development. Chapter 6 emphasizes skills that are necessary for drawing mechanisms, while chapter 12 prepares the student for proposing syntheses.In addition, each chapter contains numerous Skillbuilders, each of which is designed to foster a specific skill. Each skillbuildercontains three parts:1. Learn the Skill: a solved problem that demonstrates a particular skill;2. Practice the Skill: numerous problems (similar to the solved problem) that give the students an opportunity to practice and master the skill;3. Apply the Skill: one or two more-challenging problems in which the student must apply the skill in a slightly different environment. These problems include conceptual, cumulative, and applied problems that encourage students to think out of the box. Sometimes problems that foreshadow concepts introduced in later chapters are also included.All SkillBuilders are visually summarized at the end of each chapter (Skillbuilder review), followed by a list of suggested in-chapter and end-of-chapter practice problems.

Introduction to Quantum Mechanics


David J. Griffiths - 1994
    The book s two-part coverage organizes topics under basic theory, and assembles an arsenal of approximation schemes with illustrative applications. For physicists and engineers. "

Fundamentals of Physics


David Halliday - 2004
    A unique combination of authoritative content and stimulating applications. * Numerous improvements in the text, based on feedback from the many users of the sixth edition (both instructors and students) * Several thousand end-of-chapter problems have been rewritten to streamline both the presentations and answers * 'Chapter Puzzlers' open each chapter with an intriguing application or question that is explained or answered in the chapter * Problem-solving tactics are provided to help beginning Physics students solve problems and avoid common error * The first section in every chapter introduces the subject of the chapter by asking and answering, "What is Physics?" as the question pertains to the chapter * Numerous supplements available to aid teachers and students The extended edition provides coverage of developments in Physics in the last 100 years, including: Einstein and Relativity, Bohr and others and Quantum Theory, and the more recent theoretical developments like String Theory.

Ecology: Concepts and Applications


Manuel C. Molles Jr. - 1999
    An evolutionary perspective forms the foundation of the entire discussion. The book begins with the natural history of the planet, considers portions of the whole in the middle chapters, and ends with another perspective of the entire planet in the concluding chapter. Its unique organization of focusing only on several key concepts in each chapter sets it apart from the competition. .

Essential Calculus


James Stewart - 2006
    In writing the book James Stewart asked himself: What is essential for a three-semester calculus course for scientists and engineers? Stewart's ESSENTIAL CALCULUS offers a concise approach to teaching calculus that focuses on major concepts and supports those concepts with precise definitions, patient explanations, and carefully graded problems. Essential Calculus is only 850 pages-two-thirds the size of Stewart's other calculus texts (CALCULUS, Fifth Edition and CALCULUS, EARLY TRANSCENDENTALS, Fifth Edition)-and yet it contains almost all of the same topics. The author achieved this relative brevity mainly by condensing the exposition and by putting some of the features on the website, www.StewartCalculus.com. Despite the reduced size of the book, there is still a modern flavor: Conceptual understanding and technology are not neglected, though they are not as prominent as in Stewart's other books. ESSENTIAL CALCULUS has been written with the same attention to detail, eye for innovation, and meticulous accuracy that have made Stewart's textbooks the best-selling calculus texts in the world.

Chemistry and Chemical Reactivity (with General ChemistryNOW CD-ROM)


John C. Kotz - 1987
    This revision includes General ChemistryNow, a new CD-ROM and web-based learning system that focuses on goals, connections, and complete integration with the text.

Quantitative Chemical Analysis


Daniel C. Harris - 1982
    Dan Harris's Quantitative Chemical Analysis continues to be the most widely used  textbook for analytical chemistry.  It offers consistently modern portrait of the tools and techniques of chemical analysis, incorporating real data, spreadsheets, and a wealth of applications, all presented in a witty, personable style that engages students without compromising the  principles and depth necessary for a thorough and practical understanding.

The Art of Electronics


Paul Horowitz - 1980
    Widely accepted as the authoritative text and reference on electronic circuit design, both analog and digital, this book revolutionized the teaching of electronics by emphasizing the methods actually used by circuit designers -- a combination of some basic laws, rules of thumb, and a large bag of tricks. The result is a largely nonmathematical treatment that encourages circuit intuition, brainstorming, and simplified calculations of circuit values and performance. The new Art of Electronics retains the feeling of informality and easy access that helped make the first edition so successful and popular. It is an ideal first textbook on electronics for scientists and engineers and an indispensable reference for anyone, professional or amateur, who works with electronic circuits.

CRC Handbook of Chemistry and Physics


David R. Lide - 1984
    This edition contains NEW tables on Properties of Ionic Liquids, Solubilities of Hydrocarbons in Sea Water, Solubility of Organic Compounds in Superheated Water, and Nutritive Value of Foods. It also updates many tables including Critical Constants, Heats of Vaporization, Aqueous Solubility of Organic Compounds, Vapor Pressure of Mercury, Scientific Abbreviations and Symbols, and Bond Dissociation Energies. The 88th Edition also presents a new Foreword written by Dr. Harold Kroto, a 1996 Nobel Laureate in Chemistry.

General Chemistry


Linus Pauling - 1970
    Those principles included modern theories of atomic and molecular structure, quantum mechanics, statistical mechanics and thermodynamics. In addition, Dr. Pauling attempted to correlate the theories with descriptive chemistry, the observed properties of substances, to introduce the student to the multitude of chemical substances and their properties.In this extensively revised and updated third edition, the Nobel prizewinning author maintains an excellent balance between theoretical and descriptive material, although the amount of descriptive chemistry has been decreased somewhat, and the presentation of the subject, especially in relation to the nonmetals, has been revised in such a way as to permit greater correlation with the electronic structure of atoms, especially electronegativity. The principles of quantum mechanics are discussed on the basis of the de Broglie wavelength of the electron. The quantized energy levels of a particle in a box are derived by means of a simple assumption about the relation of the de Broglie waves to the walls of the box. No attempt is made to solve the Schrödinger wave equation for other systems, but the wave functions of hydrogen-like electrons are presented and discussed in some detail, and the quantum states for other systems are also covered. Statistical mechanics is introduced before thermodynamics, and the discussion of thermodynamics is based on it. This arrangement reflects the author's belief that beginning students can understand statistical mechanics better than chemical thermodynamics. Aimed at first-year college students who plan to major in chemistry or closely related fields, the book is written in a logical, clear and understandable style. In addition, many excellent figures are included, along with numerous problems and 75 pages of appendixes covering such topics as symmetry of molecules and crystals, hybrid bond orbitals, and magnetic properties of substances.

Linear Algebra and Its Applications [with CD-ROM]


David C. Lay - 1993