Book picks similar to
Simulation of Digital Communication Systems using Matlab by Mathuranathan Viswanathan
engineering
programming
communications
computer-science
Practical SQL: A Beginner's Guide to Storytelling with Data
Anthony DeBarros - 2018
The book focuses on using SQL to find the story your data tells, with the popular open-source database PostgreSQL and the pgAdmin interface as its primary tools.You'll first cover the fundamentals of databases and the SQL language, then build skills by analyzing data from the U.S. Census and other federal and state government agencies. With exercises and real-world examples in each chapter, this book will teach even those who have never programmed before all the tools necessary to build powerful databases and access information quickly and efficiently.You'll learn how to: •Create databases and related tables using your own data •Define the right data types for your information •Aggregate, sort, and filter data to find patterns •Use basic math and advanced statistical functions •Identify errors in data and clean them up •Import and export data using delimited text files •Write queries for geographic information systems (GIS) •Create advanced queries and automate tasks Learning SQL doesn't have to be dry and complicated. Practical SQL delivers clear examples with an easy-to-follow approach to teach you the tools you need to build and manage your own databases. This book uses PostgreSQL, but the SQL syntax is applicable to many database applications, including Microsoft SQL Server and MySQL.
The Visual Display of Quantitative Information
Edward R. Tufte - 1983
Theory and practice in the design of data graphics, 250 illustrations of the best (and a few of the worst) statistical graphics, with detailed analysis of how to display data for precise, effective, quick analysis. Design of the high-resolution displays, small multiples. Editing and improving graphics. The data-ink ratio. Time-series, relational graphics, data maps, multivariate designs. Detection of graphical deception: design variation vs. data variation. Sources of deception. Aesthetics and data graphical displays. This is the second edition of The Visual Display of Quantitative Information. Recently published, this new edition provides excellent color reproductions of the many graphics of William Playfair, adds color to other images, and includes all the changes and corrections accumulated during 17 printings of the first edition.
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions
Michael G. Milton - 2009
If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.
Functional and Reactive Domain Modeling
Debasish Ghosh - 2016
Domain modeling is a technique for creating a conceptual map of a problem space such as a business system or a scientific application, so that the developer can write the software more efficiently. The domain model doesn't present a solution to the problem, but instead describes the attributes, roles, and relationships of the entities involved, along with the constraints of the system.Reactive application design, which uses functional programming principles along with asynchronous non-blocking communication, promises to be a potent pattern for developing performant systems that are relatively easy to manage, maintain and evolve. Typically we call such models "reactive" because they are more responsive both to user requests and to system loads. But designing and implementing such models requires a different way of thinking. Because the core behaviors are implemented using pure functions, you can reason about the domain model just like mathematics, so your model becomes verifiable and robust.Functional and Reactive Domain Modeling teaches you how to think of the domain model in terms of pure functions and how to compose them to build larger abstractions. You will start with the basics of functional programming and gradually progress to the advanced concepts and patterns that you need to know to implement complex domain models. The book demonstrates how advanced FP patterns like algebraic data types, typeclass based design, and isolation of side-effects can make your model compose for readability and verifiability.On the subject of reactive modeling, the book focuses on higher order concurrency patterns like actors and futures. It uses the Akka framework as the reference implementation and demonstrates how advanced architectural patterns like event sourcing and CQRS can be put to great use in implementing scalable models. You will learn techniques that are radically different from the standard RDBMS based applications that are based on mutation of records. You'll also pick up important patterns like using asynchronous messaging for interaction based on non blocking concurrency and model persistence, which delivers the speed of in-memory processing along with suitable guarantees of reliability.
Fundamentals of Applied Electromagnetics
Fawwaz T. Ulaby - 1996
and abroad, this reader-friendly yet authoritative volume bridges the gap between circuits and new electromagnetics material. Ulaby begins coverage with transmission lines, leading readers from familiar concepts into more advanced topics and applications. Includes six new sections on Waveguides and Cavity Resonators, replacing the material on geometric optics in Chapter 8. Presents new Technology Briefs on relevant topics, connecting concepts in the book to everyday applications found in real life, such as liquid crystal displays, the laser, GPS, and x-ray tomography. Includes an interactive CD-ROM that allows readers to gain physical intuition about electromagnetics. A useful reference for engineers.
Calculus [with CD]
Howard Anton - 1992
New co-authors--Irl Bivens and Stephen Davis--from Davidson College; both distinguished educators and writers.* More emphasis on graphing calculators in exercises and examples, including CAS capabilities of graphing calculators.* More problems using tabular data and more emphasis on mathematical modeling.
Team Geek: A Software Developer's Guide to Working Well with Others
Brian W. Fitzpatrick - 2012
And in a perfect world, those who produce the best code are the most successful. But in our perfectly messy world, success also depends on how you work with people to get your job done.In this highly entertaining book, Brian Fitzpatrick and Ben Collins-Sussman cover basic patterns and anti-patterns for working with other people, teams, and users while trying to develop software. It's valuable information from two respected software engineers whose popular video series, "Working with Poisonous People," has attracted hundreds of thousands of viewers.You'll learn how to deal with imperfect people--those irrational and unpredictable beings--in the course of your work. And you'll discover why playing well with others is at least as important as having great technical skills. By internalizing the techniques in this book, you'll get more software written, be more influential, be happier in your career.
Machine Learning
Ethem Alpaydin - 2016
It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpayd�n offers a concise and accessible overview of the new AI. This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias. Alpayd�n, author of a popular textbook on machine learning, explains that as Big Data has gotten bigger, the theory of machine learning--the foundation of efforts to process that data into knowledge--has also advanced. He describes the evolution of the field, explains important learning algorithms, and presents example applications. He discusses the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances; and reinforcement learning, when an autonomous agent learns to take actions to maximize reward. In a new chapter, he considers transparency, explainability, and fairness, and the ethical and legal implications of making decisions based on data.
Introduction to Artificial Intelligence and Expert Systems
Dan W. Patterson - 1990
Graph Databases
Ian Robinson - 2013
With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems.Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution.Model data with the Cypher query language and property graph modelLearn best practices and common pitfalls when modeling with graphsPlan and implement a graph database solution in test-driven fashionExplore real-world examples to learn how and why organizations use a graph databaseUnderstand common patterns and components of graph database architectureUse analytical techniques and algorithms to mine graph database information
Dive Into Python 3
Mark Pilgrim - 2009
As in the original book, Dive Into Python, each chapter starts with a real, complete code sample, proceeds to pick it apart and explain the pieces, and then puts it all back together in a summary at the end.This book includes:Example programs completely rewritten to illustrate powerful new concepts now available in Python 3: sets, iterators, generators, closures, comprehensions, and much more A detailed case study of porting a major library from Python 2 to Python 3 A comprehensive appendix of all the syntactic and semantic changes in Python 3 This is the perfect resource for you if you need to port applications to Python 3, or if you like to jump into languages fast and get going right away.
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.