Book picks similar to
Real Analysis for Graduate Students by Richard F. Bass
best
mathematics
maths
postponed
Topology
James R. Munkres - 1975
Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.
Math Hysteria: Fun and Games with Mathematics
Ian Stewart - 2004
Ian Stewart presents us with a wealth of magical puzzles, each one spun around an amazing tale, including Counting the Cattle of the Sun, The Great Drain Robbery, and Preposterous Piratical Predicaments. Fully illustrated with explanatory diagrams, each tale is told with engaging wit, sure to amuse everyone with an interest in puzzles and mathematics. Along the way, we also meet many curious characters. Containing twenty specially-commissioned cartoons, this book will delight all who are familiar with Stewart's many other books, such as What Shape is a Snowflake? and Flatterland and anyone interested in mathematical problems. In short, these stories are engaging, challenging, and lots of fun!
How Math Explains the World: A Guide to the Power of Numbers, from Car Repair to Modern Physics
James D. Stein - 2008
In the four main sections of the book, Stein tells the stories of the mathematical thinkers who discerned some of the most fundamental aspects of our universe. From their successes and failures, delusions, and even duels, the trajectories of their innovations—and their impact on society—are traced in this fascinating narrative. Quantum mechanics, space-time, chaos theory and the workings of complex systems, and the impossibility of a "perfect" democracy are all here. Stein's book is both mind-bending and practical, as he explains the best way for a salesman to plan a trip, examines why any thought you could have is imbedded in the number π , and—perhaps most importantly—answers one of the modern world's toughest questions: why the garage can never get your car repaired on time.Friendly, entertaining, and fun, How Math Explains the World is the first book by one of California's most popular math teachers, a veteran of both "math for poets" and Princeton's Institute for Advanced Studies. And it's perfect for any reader wanting to know how math makes both science and the world tick.
M.C. Escher: Visions of Symmetry
Doris Schattschneider - 1990
It deals with one powerful obsession that preoccupied Escher: what he called "the regular division of the plane," the puzzlelike interlocking of birds, fish, lizards, and other natural forms in continuous patterns. Schattschneider asks, "How did he do it?" She answers the question by analyzing Escher's notebooks." Visions of Symmetry includes many of Escher's masterworks, as well as hundreds of lesser-known examples of his work. This new edition also features a foreward and an illustrated epilogue that reveals new information about Escher's inspiration and shows how his ideas of symmetry have influenced mathematicians, computer scientists, and contemporary artists.
From 0 to Infinity in 26 Centuries: The Extraordinary Story of Maths
Chris Waring - 2012
Book by Waring, Chris
Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications
Nassim Nicholas Taleb - 2020
Switching from thin tailed to fat tailed distributions requires more than "changing the color of the dress." Traditional asymptotics deal mainly with either n=1 or n=∞, and the real world is in between, under the "laws of the medium numbers"-which vary widely across specific distributions. Both the law of large numbers and the generalized central limit mechanisms operate in highly idiosyncratic ways outside the standard Gaussian or Levy-Stable basins of convergence. A few examples: - The sample mean is rarely in line with the population mean, with effect on "na�ve empiricism," but can be sometimes be estimated via parametric methods. - The "empirical distribution" is rarely empirical. - Parameter uncertainty has compounding effects on statistical metrics. - Dimension reduction (principal components) fails. - Inequality estimators (Gini or quantile contributions) are not additive and produce wrong results. - Many "biases" found in psychology become entirely rational under more sophisticated probability distributions. - Most of the failures of financial economics, econometrics, and behavioral economics can be attributed to using the wrong distributions. This book, the first volume of the Technical Incerto, weaves a narrative around published journal articles.
It's a Numberful World: How Math Is Hiding Everywhere
Eddie Woo - 2019
. . like a pendulum? These may not look like math questions, but they are-because they all have to do with patterns. And mathematics, at heart, is the study of patterns. That realization changed Eddie Woo's life-by turning the "dry" subject he dreaded in high school into a boundless quest for discovery. Now an award-winning math teacher, Woo sees patterns everywhere: in the "branches" of blood vessels and lightning, in the growth of a savings account and a sunflower, even in his morning cup of tea! Here are twenty-six bite-size chapters on the hidden mathematical marvels that encrypt our email, enchant our senses, and even keep us alive-from the sine waves we hear as "music" to the mysterious golden ratio. This book will change your mind about what math can be. We are all born mathematicians-and It's a Numberful World.
I Want to Be a Mathematician: An Automathography
Paul R. Halmos - 1985
The main message i absorbed from it was a set of conditions required for success in mathematics: talent, yes; single-mindedness, almost as obvious; sense of humour, essential when the going gets tough; and love, yes that is the right word - you must love mathematics, and that means all the ingredients, passion, pain and loyalty." The Mathematical Gazette#1"The book is written in a very personal, but plain and honest way, result of reflected experience and mature self-assessment of a wise man. It avoids palliation as well as exaggerated modesty.- It should be a document for history and sociology of science." (R. Fischer) Zentralblatt für Mathematik#2
Calculus [With CDROM]
James Stewart - 1986
Stewart's Calculus is successful throughout the world because he explains the material in a way that makes sense to a wide variety of readers. His explanations make ideas come alive, and his problems challenge, to reveal the beauty of calculus. Stewart's examples stand out because they are not just models for problem solving or a means of demonstrating techniques--they also encourage readers to develp an analytic view of the subject. This edition includes new problems, examples, and projects.
The Fabulous Fibonacci Numbers
Alfred S. Posamentier - 2007
In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few.Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
The Indisputable Existence of Santa Claus: The Mathematics of Christmas
Hannah Fry - 2016
And proves once and for all that maths isn't just for old men with white hair and beards who associate with elves.Maths has never been merrier.
Calculus
Ron Larson - 1999
It has been widely praised by a generation of users for its solid and effective pedagogy that addresses the needs of a broad range of teaching and learning styles and environments. Each title is just one component in a comprehensive calculus course program that carefully integrates and coordinates print, media, and technology products for successful teaching and learning.
Principles of Mathematical Analysis
Walter Rudin - 1964
The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
The Calculus 7
Louis Leithold - 1995
The author has sought to utlilize the technology now available for the teaching and learning of calculus. The hand-held graphics calculator is one such form of technology that has been integrated into the book. Topics in algebra, trigonometry, and analytical geometry appear in the Appendix.
Zero: The Biography of a Dangerous Idea
Charles Seife - 2000
For centuries, the power of zero savored of the demonic; once harnessed, it became the most important tool in mathematics. Zero follows this number from its birth as an Eastern philosophical concept to its struggle for acceptance in Europe and its apotheosis as the mystery of the black hole. Today, zero lies at the heart of one of the biggest scientific controversies of all time, the quest for the theory of everything. Elegant, witty, and enlightening, Zero is a compelling look at the strangest number in the universe and one of the greatest paradoxes of human thought.