The Principles of Quantum Mechanics


Paul A.M. Dirac - 1958
    No graduate student of quantum theory should leave it unread"--W.C Schieve, University of Texas

Fundamentals of Physics, Chapters 1 - 21, Enhanced Problems Version


David Halliday - 2000
    This newest edition expands on the strengths of earlier versions, helping students bridge the gap between concepts and reasoning. Students are shown, rather than told about, how physics works and are given the opportunity to apply concepts to real-world problems. Each chapter and concept has been scrutinized to ensure clarity, currency, and accuracy while checkpoints, problem solving tactics, and sample problems help students make sense of new concepts. As always, Fundamentals of Physics covers every aspect of basic physics, from force and motion to relativity and will prepare today's students to be tomorrow's scientists.

Physics for Scientists and Engineers


Douglas C. Giancoli - 1988
    For the calculus-based General Physics course primarily taken by engineers and scientists.

Introduction to Statistical Quality Control


Douglas C. Montgomery - 1985
    It provides comprehensive coverage of the subject from basic principles to state-of-art concepts and applications. The objective is to give the reader a sound understanding of the principles and the basis for applying them in a variety of both product and nonproduct situations. While statistical techniques are emphasized throughout, the book has a strong engineering and management orientation. Guidelines are given throughout the book for selecting the proper type of statistical technique to use in a wide variety of product and nonproduct situations. By presenting theory, and supporting the theory with clear and relevant examples, Montgomery helps the reader to understand the big picture of important concepts. Updated to reflect contemporary practice and provide more information on management aspects of quality improvement.

Quantum Field Theory for the Gifted Amateur


Tom Lancaster - 2014
    Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in detail. Using numerous worked examples, diagrams, and careful physically motivated explanations, this book will smooth the path towards understanding the radically different and revolutionary view of the physical world that quantum field theory provides, and which all physicists should have the opportunity to experience.To request a copy of the Solutions Manual, visit http: //global.oup.com/uk/academic/physics/ad....

Quantum Theory


David Bohm - 1951
    Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail. Addressed primarily to advanced undergraduate students, the text begins with a study of the physical formulation of the quantum theory, from its origin and early development through an analysis of wave vs. particle properties of matter. In Part II, Professor Bohm addresses the mathematical formulation of the quantum theory, examining wave functions, operators, Schrödinger's equation, fluctuations, correlations, and eigenfunctions.Part III takes up applications to simple systems and further extensions of quantum theory formulation, including matrix formulation and spin and angular momentum. Parts IV and V explore the methods of approximate solution of Schrödinger's equation and the theory of scattering. In Part VI, the process of measurement is examined along with the relationship between quantum and classical concepts.Throughout the text, Professor Bohm places strong emphasis on showing how the quantum theory can be developed in a natural way, starting from the previously existing classical theory and going step by step through the experimental facts and theoretical lines of reasoning which led to replacement of the classical theory by the quantum theory.

Student Solutions Guide For Discrete Mathematics And Its Applications


Kenneth H. Rosen - 1988
    These themes include mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and enhanced problem-solving skills through modeling. Its intent is to demonstrate the relevance and practicality of discrete mathematics to all students. The Fifth Edition includes a more thorough and linear presentation of logic, proof types and proof writing, and mathematical reasoning. This enhanced coverage will provide students with a solid understanding of the material as it relates to their immediate field of study and other relevant subjects. The inclusion of applications and examples to key topics has been significantly addressed to add clarity to every subject. True to the Fourth Edition, the text-specific web site supplements the subject matter in meaningful ways, offering additional material for students and instructors. Discrete math is an active subject with new discoveries made every year. The continual growth and updates to the web site reflect the active nature of the topics being discussed. The book is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite.

Course of Theoretical Physics: Vol. 1, Mechanics


L.D. Landau - 1969
    The exposition is simple and leads to the most complete direct means of solving problems in mechanics. The final sections on adiabatic invariants have been revised and augmented. In addition a short biography of L D Landau has been inserted.

Quantum Mechanics and Path Integrals


Richard P. Feynman - 1965
    Feynman starts with an intuitive view of fundamental quantum mechanics, gradually introducing path integrals. Later chapters explore more advanced topics, including the perturbation method, quantum electrodynamics, and statistical mechanics. 1965 edition, emended in 2005.

Vibrations and Waves


Anthony P. French - 1971
    Generous support from a number of foundations provided the means for assembling and maintaining an experienced staff to co-operate with members of the Institute's Physics Department in the examination, improvement, and development of physics curriculum materials for students planning careers in the sciences. After careful analysis of objectives and the problems involved, preliminary versions of textbooks were prepared, tested through classroom use at M.I.T. and other institutions, re-evaluated, rewritten, and tried again. Only then were the final manuscripts undertaken.

Classical Mechanics


John R. Taylor - 2003
    John Taylor has brought to his new book, Classical Mechanics, all of the clarity and insight that made his introduction to Error Analysis a best-selling text.

Solid State Physics


Neil W. Ashcroft - 1976
    This book provides an introduction to the field of solid state physics for undergraduate students in physics, chemistry, engineering, and materials science.

Calculus: The Classic Edition


Earl W. Swokowski - 1991
    Groundbreaking in every way when first published, this book is a simple, straightforward, direct calculus text. It's popularity is directly due to its broad use of applications, the easy-to-understand writing style, and the wealth of examples and exercises which reinforce conceptualization of the subject matter. The author wrote this text with three objectives in mind. The first was to make the book more student-oriented by expanding discussions and providing more examples and figures to help clarify concepts. To further aid students, guidelines for solving problems were added in many sections of the text. The second objective was to stress the usefulness of calculus by means of modern applications of derivatives and integrals. The third objective, to make the text as accurate and error-free as possible, was accomplished by a careful examination of the exposition, combined with a thorough checking of each example and exercise.

Quantum Mechanics: The Theoretical Minimum


Leonard Susskind - 2014
    Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics.In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course.An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

CK-12 Basic Physics


CK-12 Foundation - 2012
    Objects in harmonic motion have the ability to transfer some of their energy over large distances. Light Nature: This chapter covers the nature of light, polarization, and color.