Book picks similar to
Complex Semisimple Lie Algebras by Jean-Pierre Serre


mathematics
mmath
langlands-program-and-related
m-diffgeo

Fundamentals of Engineering Electromagnetics


David K. Cheng - 1992
    It has been developed in response to the need for a text that supports the mastery of this difficult subject. Therefore, in addition to presenting electromagnetics in a concise and logical manner, the text includes end-of-section review questions, worked examples, boxed remarks that alert students to key ideas and tricky points, margin notes, and point-by-point chapter summaries. Examples and applications invite students to solve problems and build their knowledge of electromagnetics. Application topics include: electric motors, transmission lines, waveguides, antenna arrays and radar systems.

Essentials of Psychiatric Diagnosis, First Edition: Responding to the Challenge of DSM-5


Allen Frances - 2013
    Covering every disorder routinely encountered in clinical practice, Frances provides the appropriate ICD-9-CM code for each one (the same code utilized in the DSM), a useful screening question, a colorful descriptive prototype, lucid diagnostic tips, and a discussion of other disorders that must be ruled out. The book closes with an index of the most common presenting symptoms, listing possible diagnoses that must be considered for each. Frances was instrumental in the development of past editions of the DSM and provides helpful cautions on questionable aspects of DSM-5.

Introduction to Psychology: Gateways to Mind and Behavior


Dennis Coon - 2000
    The Twelfth Edition's hallmark continues to be its pioneering integration of the proven-effective SQ4R learning system (Survey, Question, Read, Reflect, Review, Recite), which promotes critical thinking as it guides students step-by-step to an understanding of psychology's broad concepts and diversity of topics. Throughout every chapter, these active learning tools—together with the book's example-laced writing style, discussions of positive psychology, cutting-edge coverage of the field's new research findings, and excellent media resources—ensure that students find the study of psychology fascinating, relevant, and above all, accessible.

Fields of Color: The theory that escaped Einstein


Rodney A. Brooks - 2010
    QFT is the only physics theory that makes sense and that dispels or resolves the paradoxes of relativity and quantum mechanics that have confused and mystified so many people.

Econometrics


Fumio Hayashi - 2000
    It introduces first year Ph.D. students to standard graduate econometrics material from a modern perspective. It covers all the standard material necessary for understanding the principal techniques of econometrics from ordinary least squares through cointegration. The book is also distinctive in developing both time-series and cross-section analysis fully, giving the reader a unified framework for understanding and integrating results.Econometrics has many useful features and covers all the important topics in econometrics in a succinct manner. All the estimation techniques that could possibly be taught in a first-year graduate course, except maximum likelihood, are treated as special cases of GMM (generalized methods of moments). Maximum likelihood estimators for a variety of models (such as probit and tobit) are collected in a separate chapter. This arrangement enables students to learn various estimation techniques in an efficient manner. Eight of the ten chapters include a serious empirical application drawn from labor economics, industrial organization, domestic and international finance, and macroeconomics. These empirical exercises at the end of each chapter provide students a hands-on experience applying the techniques covered in the chapter. The exposition is rigorous yet accessible to students who have a working knowledge of very basic linear algebra and probability theory. All the results are stated as propositions, so that students can see the points of the discussion and also the conditions under which those results hold. Most propositions are proved in the text.For those who intend to write a thesis on applied topics, the empirical applications of the book are a good way to learn how to conduct empirical research. For the theoretically inclined, the no-compromise treatment of the basic techniques is a good preparation for more advanced theory courses.

Sacred Number: The Secret Quality of Quantities


Miranda Lundy - 2005
    Beautifully illustrated with old engravings as well as contemporary imagery, Sacred Number introduces basic counting systems; significant numbers from major religious texts; the importance of astronomy, geometry, and music to number quality; how numbers affect architecture. Lundy explains why the ideas of Pythagoras still resonate, and she profiles each number from one to ten to show its distinct qualities: why, for example, the golden section is associated with five, and seven with the Virgin Mary.

Principles of Microeconomics


Robert H. Frank - 1994
    

Lectures on the Foundations of Mathematics, Cambridge 1939


Ludwig Wittgenstein - 1989
    A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.

Reflect & Relate: An Introduction to Interpersonal Communication


Steven McCornack - 2005
    With an emphasis on critical self-reflection, Reflect & Relate gives students the practical skills to work through life's many challenges using better interpersonal communication. The sound theory, clear explanations, lively writing, practical activities, and vibrant design all work toward a single goal: Teaching students to make better communication choices so they can build happier and healthier interpersonal relationships.

A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity


Peter Collier - 2012
    This user-friendly self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. The book is written using straightforward and accessible language, with clear derivations and explanations as well as numerous fully solved problems. For those with minimal mathematical background, the first chapter provides a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes and relativistic cosmology. Following the historic 2015 LIGO (Laser Interferometer Gravitational-Wave Observatory) detection, there is now an additional chapter on gravitational waves, ripples in the fabric of spacetime that potentially provide a revolutionary new way to study the universe. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes.Understand even the basics of Einstein's amazing theory and the world will never seem the same again. ContentsPrefaceIntroduction1 Foundation mathematics2 Newtonian mechanics3 Special relativity4 Introducing the manifold5 Scalars, vectors, one-forms and tensors6 More on curvature7 General relativity8 The Newtonian limit9 The Schwarzschild metric10 Schwarzschild black holes11 Cosmology12 Gravitational wavesAppendix: The Riemann curvature tensorBibliographyAcknowledgementsJanuary 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.

Pure Mathematics: A First Course


J.K. Backhouse - 1974
    This well-established two-book course is designed for class teaching and private study leading to GCSE examinations in mathematics and further Mathematics at A Level.

Visions of Infinity: The Great Mathematical Problems


Ian Stewart - 2013
    Some of these problems are new, while others have puzzled and bewitched thinkers across the ages. Such challenges offer a tantalizing glimpse of the field's unlimited potential, and keep mathematicians looking toward the horizons of intellectual possibility.In Visions of Infinity, celebrated mathematician Ian Stewart provides a fascinating overview of the most formidable problems mathematicians have vanquished, and those that vex them still. He explains why these problems exist, what drives mathematicians to solve them, and why their efforts matter in the context of science as a whole. The three-century effort to prove Fermat's last theorem—first posited in 1630, and finally solved by Andrew Wiles in 1995—led to the creation of algebraic number theory and complex analysis. The Poincaré conjecture, which was cracked in 2002 by the eccentric genius Grigori Perelman, has become fundamental to mathematicians' understanding of three-dimensional shapes. But while mathematicians have made enormous advances in recent years, some problems continue to baffle us. Indeed, the Riemann hypothesis, which Stewart refers to as the “Holy Grail of pure mathematics,” and the P/NP problem, which straddles mathematics and computer science, could easily remain unproved for another hundred years.An approachable and illuminating history of mathematics as told through fourteen of its greatest problems, Visions of Infinity reveals how mathematicians the world over are rising to the challenges set by their predecessors—and how the enigmas of the past inevitably surrender to the powerful techniques of the present.

My Brain is Open: The Mathematical Journeys of Paul Erdős


Bruce Schechter - 1998
    Hungarian-born Erdős believed that the meaning of life was to prove and conjecture. His work in the United States and all over the world has earned him the titles of the century's leading number theorist and the most prolific mathematician who ever lived. Erdős's important work has proved pivotal to the development of computer science, and his unique personality makes him an unforgettable character in the world of mathematics. Incapable of the smallest of household tasks and having no permanent home or job, he was sustained by the generosity of colleagues and by his own belief in the beauty of numbers. Witty and filled with the sort of mathematical puzzles that intrigued Erdős and continue to fascinate mathematicians today, My Brain Is Open is the story of this strange genius and a journey in his footsteps through the world of mathematics, where universal truths await discovery like hidden treasures and where brilliant proofs are poetry.

All the Mathematics You Missed


Thomas A. Garrity - 2001
    This book will offer students a broad outline of essential mathematics and will help to fill in the gaps in their knowledge. The author explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The topics include linear algebra, vector calculus, differential and analytical geometry, real analysis, point-set topology, probability, complex analysis, set theory, algorithms, and more. An annotated bibliography offers a guide to further reading and to more rigorous foundations.

How Numbers Work: Discover the Strange and Beautiful World of Mathematics (New Scientist Instant Expert)


New Scientist - 2018
    No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends.The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the "imaginary" number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it?How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.