Book picks similar to
In All Likelihood: Statistical Modelling and Inference Using Likelihood by Yudi Pawitan
stats
statistics
data-science
mathematics
The Perfect Bet: How Science and Math Are Taking the Luck Out of Gambling
Adam Kucharski - 2015
In The Perfect Bet, mathematician and award-winning writer Adam Kucharski tells the astonishing story of how the experts have succeeded, revolutionizing mathematics and science in the process. The house can seem unbeatable. Kucharski shows us just why it isn't. Even better, he demonstrates how the search for the perfect bet has been crucial for the scientific pursuit of a better world.
The Elements of Data Analytic Style
Jeffrey Leek - 2015
This book is focused on the details of data analysis that sometimes fall through the cracks in traditional statistics classes and textbooks. It is based in part on the authors blog posts, lecture materials, and tutorials. The author is one of the co-developers of the Johns Hopkins Specialization in Data Science the largest data science program in the world that has enrolled more than 1.76 million people. The book is useful as a companion to introductory courses in data science or data analysis. It is also a useful reference tool for people tasked with reading and critiquing data analyses. It is based on the authors popular open-source guides available through his Github account (https://github.com/jtleek). The paper is also available through Leanpub (https://leanpub.com/datastyle), if the book is purchased on that platform you are entitled to lifetime free updates.
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
Jacob Cohen - 1975
Readers profit from its verbal-conceptual exposition and frequent use of examples.The applied emphasis provides clear illustrations of the principles and provides worked examples of the types of applications that are possible. Researchers learn how to specify regression models that directly address their research questions. An overview of the fundamental ideas of multiple regression and a review of bivariate correlation and regression and other elementary statistical concepts provide a strong foundation for understanding the rest of the text. The third edition features an increased emphasis on graphics and the use of confidence intervals and effect size measures, and an accompanying website with data for most of the numerical examples along with the computer code for SPSS, SAS, and SYSTAT, at www.psypress.com/9780805822236 .Applied Multiple Regression serves as both a textbook for graduate students and as a reference tool for researchers in psychology, education, health sciences, communications, business, sociology, political science, anthropology, and economics. An introductory knowledge of statistics is required. Self-standing chapters minimize the need for researchers to refer to previous chapters.
The Haskell Road to Logic, Maths and Programming
Kees Doets - 2004
Haskell emerged in the last decade as a standard for lazy functional programming, a programming style where arguments are evaluated only when the value is actually needed. Haskell is a marvellous demonstration tool for logic and maths because its functional character allows implementations to remain very close to the concepts that get implemented, while the laziness permits smooth handling of infinite data structures.This book does not assume the reader to have previous experience with either programming or construction of formal proofs, but acquaintance with mathematical notation, at the level of secondary school mathematics is presumed. Everything one needs to know about mathematical reasoning or programming is explained as we go along. After proper digestion of the material in this book the reader will be able to write interesting programs, reason about their correctness, and document them in a clear fashion. The reader will also have learned how to set up mathematical proofs in a structured way, and how to read and digest mathematical proofs written by others.
Clean Code: A Handbook of Agile Software Craftsmanship
Robert C. Martin - 2007
But if code isn't clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn't have to be that way. Noted software expert Robert C. Martin presents a revolutionary paradigm with Clean Code: A Handbook of Agile Software Craftsmanship . Martin has teamed up with his colleagues from Object Mentor to distill their best agile practice of cleaning code on the fly into a book that will instill within you the values of a software craftsman and make you a better programmer but only if you work at it. What kind of work will you be doing? You'll be reading code - lots of code. And you will be challenged to think about what's right about that code, and what's wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Clean Code is divided into three parts. The first describes the principles, patterns, and practices of writing clean code. The second part consists of several case studies of increasing complexity. Each case study is an exercise in cleaning up code - of transforming a code base that has some problems into one that is sound and efficient. The third part is the payoff: a single chapter containing a list of heuristics and "smells" gathered while creating the case studies. The result is a knowledge base that describes the way we think when we write, read, and clean code. Readers will come away from this book understanding ‣ How to tell the difference between good and bad code‣ How to write good code and how to transform bad code into good code‣ How to create good names, good functions, good objects, and good classes‣ How to format code for maximum readability ‣ How to implement complete error handling without obscuring code logic ‣ How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.
Building Machine Learning Systems with Python
Willi Richert - 2013
Statistics for Business & Economics
James T. McClave - 1991
Theoretical, yet applied. Statistics for Business and Economics, Eleventh Edition, gives you the best of both worlds. Using a rich array of applications from a variety of industries, McClave/Sincich/Benson clearly demonstrates how to use statistics effectively in a business environment.The book focuses on developing statistical thinking so the reader can better assess the credibility and value of inferences made from data. As consumers and future producers of statistical inferences, readers are introduced to a wide variety of data collection and analysis techniques to help them evaluate data and make informed business decisions. As with previous editions, this revision offers an abundance of applications with many new and updated exercises that draw on real business situations and recent economic events. The authors assume a background of basic algebra.
The Deep Learning Revolution
Terrence J. Sejnowski - 2018
Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.
The Sabermetric Revolution: Assessing the Growth of Analytics in Baseball
Benjamin Baumer - 2013
Rocketed to popularity by the 2003 bestseller Moneyball and the film of the same name, the use of sabermetrics to analyze player performance has appeared to be a David to the Goliath of systemically advantaged richer teams that could be toppled only by creative statistical analysis. The story has been so compelling that, over the past decade, team after team has integrated statistical analysis into its front office. But how accurately can crunching numbers quantify a player's ability? Do sabermetrics truly level the playing field for financially disadvantaged teams? How much of the baseball analytic trend is fad and how much fact?The Sabermetric Revolution sets the record straight on the role of analytics in baseball. Former Mets sabermetrician Benjamin Baumer and leading sports economist Andrew Zimbalist correct common misinterpretations and develop new methods to assess the effectiveness of sabermetrics on team performance. Tracing the growth of front office dependence on sabermetrics and the breadth of its use today, they explore how Major League Baseball and the field of sports analytics have changed since the 2002 season. Their conclusion is optimistic, but the authors also caution that sabermetric insights will be more difficult to come by in the future. The Sabermetric Revolution offers more than a fascinating case study of the use of statistics by general managers and front office executives: for fans and fantasy leagues, this book will provide an accessible primer on the real math behind moneyball as well as new insight into the changing business of baseball.
Data Strategy: How to Profit from a World of Big Data, Analytics and the Internet of Things
Bernard Marr - 2017
However, business leaders and managers cannot afford to be unconcerned or sceptical about data. Data is revolutionizing the way we work and it is the companies that view data as a strategic asset that will survive and thrive. Bernard Marr's
Data Strategy
is a must-have guide to creating a robust data strategy. Explaining how to identify your strategic data needs, what methods to use to collect the data and, most importantly, how to translate your data into organizational insights for improved business decision-making and performance, this is essential reading for anyone aiming to leverage the value of their business data and gain competitive advantage.Packed with case studies and real-world examples, advice on how to build data competencies in an organization and crucial coverage of how to ensure your data doesn't become a liability,
Data Strategy
will equip any organization with the tools and strategies it needs to profit from big data, analytics and the Internet of Things.
A Textbook of Engineering Mathematics
N.P. Bali - 2010
The salient features of the book are as follows: It exactly covers the prescribed syllabus. Nothing undesirable has been included and nothing essential has been left. Its approach is explanatory and language is lucid and communicable. The exposition of the subject matter is systematic and the students are better prepared to solve the problems. All fundamentals of the included topics are explained with a micro-analysis. Sufficient number of solved examples have been given to let the students understand the various skills necessary to solve the problems. These examples are well-graded. Unsolved exercises of multi-varieties have been given in a well-graded style. Attempting those on his own, will enable a student to create confidence and independence in him/her regarding the understanding of the subject. Daily life problems and practical applications have been incorporated in the body of the text. A large number of attractive and accurate figures have been drawn which enable a student to grasp the subject in an easier way. All the answers have been checked and verified. About The Author: N.P. Bali is a prolific author of over 100 books for degree and engineering students. He has been writing books for more than forty years. His books on the following topics are well known for their easy comprehension and lucid presentation: Algebra, Trigonometry, Differential Calculus, Integral Calculus, Real Analysis, Co-ordinate Geometry, Statics, Dynamics etc. Dr. Manish Goyal has been associated with
How to Solve It: A New Aspect of Mathematical Method
George Pólya - 1944
Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.
Python Tricks: A Buffet of Awesome Python Features
Dan Bader - 2017
Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today.
Who Should Read This Book:
If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review.
If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2.
If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista.
If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge.
What Python Developers Say About The Book:
"I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.
How Charts Lie: Getting Smarter about Visual Information
Alberto Cairo - 2019
While such visualizations can better inform us, they can also deceive by displaying incomplete or inaccurate data, suggesting misleading patterns—or simply misinform us by being poorly designed, such as the confusing “eye of the storm” maps shown on TV every hurricane season.Many of us are ill equipped to interpret the visuals that politicians, journalists, advertisers, and even employers present each day, enabling bad actors to easily manipulate visuals to promote their own agendas. Public conversations are increasingly driven by numbers, and to make sense of them we must be able to decode and use visual information. By examining contemporary examples ranging from election-result infographics to global GDP maps and box-office record charts, How Charts Lie teaches us how to do just that.
Introductory Statistics
Neil A. Weiss - 1987
This book develops statistical thinking over rote drill and practice. The Nature of Statistics; Organizing Data; Descriptive Measures; Probability Concepts; Discrete Random Variables; The Normal Distribution; The Sampling Distribution of the Sample Menu; Confidence Intervals for One Population Mean; Hypothesis Tests for One Population Mean; Inferences for Two Population Means; Inferences for Population Standard Deviations; Inferences for Population Proportions; Chi-Square Procedures; Descriptive Methods in Regression and Correlation; Inferential Methods in Regression and Correlation; Analysis of Variance (ANOVA)
For all readers interested in Introductory Statistics.