Python Data Science Handbook: Tools and Techniques for Developers


Jake Vanderplas - 2016
    Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

A Guide to the Project Management Body of Knowledge (PMBOK® Guide)


Project Management Institute - 1995
    This internationally recognized standard provides the essential tools to practice project management and deliver organizational results.

Fluent Python: Clear, Concise, and Effective Programming


Luciano Ramalho - 2015
    With this hands-on guide, you'll learn how to write effective, idiomatic Python code by leveraging its best and possibly most neglected features. Author Luciano Ramalho takes you through Python's core language features and libraries, and shows you how to make your code shorter, faster, and more readable at the same time.Many experienced programmers try to bend Python to fit patterns they learned from other languages, and never discover Python features outside of their experience. With this book, those Python programmers will thoroughly learn how to become proficient in Python 3.This book covers:Python data model: understand how special methods are the key to the consistent behavior of objectsData structures: take full advantage of built-in types, and understand the text vs bytes duality in the Unicode ageFunctions as objects: view Python functions as first-class objects, and understand how this affects popular design patternsObject-oriented idioms: build classes by learning about references, mutability, interfaces, operator overloading, and multiple inheritanceControl flow: leverage context managers, generators, coroutines, and concurrency with the concurrent.futures and asyncio packagesMetaprogramming: understand how properties, attribute descriptors, class decorators, and metaclasses work"

The Tyranny of Metrics


Jerry Z. Muller - 2017
    But in our zeal to instill the evaluation process with scientific rigor, we've gone from measuring performance to fixating on measuring itself. The result is a tyranny of metrics that threatens the quality of our lives and most important institutions. In this timely and powerful book, Jerry Muller uncovers the damage our obsession with metrics is causing--and shows how we can begin to fix the problem.Filled with examples from education, medicine, business and finance, government, the police and military, and philanthropy and foreign aid, this brief and accessible book explains why the seemingly irresistible pressure to quantify performance distorts and distracts, whether by encouraging "gaming the stats" or "teaching to the test." That's because what can and does get measured is not always worth measuring, may not be what we really want to know, and may draw effort away from the things we care about. Along the way, we learn why paying for measured performance doesn't work, why surgical scorecards may increase deaths, and much more. But metrics can be good when used as a complement to--rather than a replacement for--judgment based on personal experience, and Muller also gives examples of when metrics have been beneficial.Complete with a checklist of when and how to use metrics, The Tyranny of Metrics is an essential corrective to a rarely questioned trend that increasingly affects us all.

Traction: A Startup Guide to Getting Customers


Gabriel Weinberg - 2014
    What failed startups don't have are enough customers.Founders and employees fail to spend time thinking about (and working on) traction in the same way they work on building a product. This shortsighted approach has startups trying random tactics - some ads, a blog post or two - in an unstructured way that's guaranteed to fail. This book changes that. Traction Book provides startup founders and employees with the framework successful companies have used to get traction. It allows you to think about which marketing channels make sense for you, given your industry and company stage. This framework has been used by founders like Jimmy Wales (Wikipedia), Alexis Ohanian (Reddit), Paul English (Kayak.com), and Alex Pachikov (Evernote) to build some of the biggest companies and organizations in the world. We interviewed each of the above founders - along with 35+ others - and pulled out the repeatable tactics and strategies they used to get traction. We then cover every possible marketing channel you can use to get traction, and show you which channels will be your key to growth. This book shows you how to grow at a time when getting traction is more important than ever. Below are the channels we cover in the book:Viral Marketing Public Relations (PR) Unconventional PR Search Engine Marketing (SEM) Social and Display Ads Offline Ads Search Engine Optimization (SEO) Content Marketing Email Marketing Engineering as Marketing Target Market Blogs Business Development (BD) Sales Affiliate Programs Existing Platforms Trade Shows Offline Events Speaking Engagements Community BuildingThis book draws on interviews with the following individuals: Jimmy Wales, Co-founder of Wikipedia Alexis Ohanian, Co-founder of reddit Eric Ries, Author of The Lean Startup Rand Fishkin, Founder of SEOmoz Noah Kagan, Founder of AppSumo Patrick McKenzie, CEO of Bingo Card Creator Sam Yagan, Co-founder of OkCupid Andrew Chen, Investor at 500 Startups Justin Kan, Founder of Justin.tv Mark Cramer, CEO of SurfCanyon Colin Nederkoorn, CEO of Customer.io Jason Cohen, Founder of WP Engine Chris Fralic, Partner at First Round Paul English, CEO of Kayak.com Rob Walling, Founder of MicroConf Brian Riley, Co-founder of SlidePad Steve Welch, Co-founder of DreamIt Jason Kincaid, Blogger at TechCrunch Nikhil Sethi, Founder of Adaptly Rick Perreault, CEO of Unbounce Alex Pachikov, Co-founder of Evernote David Skok, Partner at Matrix Ashish Kundra, CEO of myZamana David Hauser, Founder of Grasshopper Matt Monahan, CEO of Inflection Jeff Atwood, Co-founder of Discourse Dan Martell, CEO of Clarity.fm Chris McCann, Founder of StartupDigest Ryan Holiday, Exec at American Apparel Todd Vollmer, Enterprise Sales Veteran Sandi MacPherson, Founder of Quibb Andrew Warner, Founder of Mixergy Sean Murphy, Founder of SKMurphy Satish Dharmaraj, Partner at Redpoint Garry Tan, Partner at Y Combinator Steve Barsh, CEO of Packlate Michael Bodekaer, Co-founder of Smart Launch Zack Linford, Founder of Optimozo

Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists


Philipp K. Janert - 2010
    With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora

Cracking the PM Interview: How to Land a Product Manager Job in Technology


Gayle Laakmann McDowell - 2013
    Cracking the PM Interview is a comprehensive book about landing a product management role in a startup or bigger tech company. Learn how the ambiguously-named "PM" (product manager / program manager) role varies across companies, what experience you need, how to make your existing experience translate, what a great PM resume and cover letter look like, and finally, how to master the interview: estimation questions, behavioral questions, case questions, product questions, technical questions, and the super important "pitch."

Release It!: Design and Deploy Production-Ready Software (Pragmatic Programmers)


Michael T. Nygard - 2007
    Did you design your system to survivef a sudden rush of visitors from Digg or Slashdot? Or an influx of real world customers from 100 different countries? Are you ready for a world filled with flakey networks, tangled databases, and impatient users?If you're a developer and don't want to be on call for 3AM for the rest of your life, this book will help.In Release It!, Michael T. Nygard shows you how to design and architect your application for the harsh realities it will face. You'll learn how to design your application for maximum uptime, performance, and return on investment.Mike explains that many problems with systems today start with the design.

Domain-Driven Design: Tackling Complexity in the Heart of Software


Eric Evans - 2003
    "His book is very compatible with XP. It is not about drawing pictures of a domain; it is about how you think of it, the language you use to talk about it, and how you organize your software to reflect your improving understanding of it. Eric thinks that learning about your problem domain is as likely to happen at the end of your project as at the beginning, and so refactoring is a big part of his technique. "The book is a fun read. Eric has lots of interesting stories, and he has a way with words. I see this book as essential reading for software developers--it is a future classic." --Ralph Johnson, author of Design Patterns "If you don't think you are getting value from your investment in object-oriented programming, this book will tell you what you've forgotten to do. "Eric Evans convincingly argues for the importance of domain modeling as the central focus of development and provides a solid framework and set of techniques for accomplishing it. This is timeless wisdom, and will hold up long after the methodologies du jour have gone out of fashion." --Dave Collins, author of Designing Object-Oriented User Interfaces "Eric weaves real-world experience modeling--and building--business applications into a practical, useful book. Written from the perspective of a trusted practitioner, Eric's descriptions of ubiquitous language, the benefits of sharing models with users, object life-cycle management, logical and physical application structuring, and the process and results of deep refactoring are major contributions to our field." --Luke Hohmann, author of Beyond Software Architecture "This book belongs on the shelf of every thoughtful software developer." --Kent Beck "What Eric has managed to capture is a part of the design process that experienced object designers have always used, but that we have been singularly unsuccessful as a group in conveying to the rest of the industry. We've given away bits and pieces of this knowledge...but we've never organized and systematized the principles of building domain logic. This book is important." --Kyle Brown, author of Enterprise Java(TM) Programming with IBM(R) WebSphere(R) The software development community widely acknowledges that domain modeling is central to software design. Through domain models, software developers are able to express rich functionality and translate it into a software implementation that truly serves the needs of its users. But despite its obvious importance, there are few practical resources that explain how to incorporate effective domain modeling into the software development process. Domain-Driven Design fills that need. This is not a book about specific technologies. It offers readers a systematic approach to domain-driven design, presenting an extensive set of design best practices, experience-based techniques, and fundamental principles that facilitate the development of software projects facing complex domains. Intertwining design and development practice, this book incorporates numerous examples based on actual projects to illustrate the application of domain-driven design to real-world software development. Readers learn how to use a domain model to make a complex development effort more focused and dynamic. A core of best practices and standard patterns provides a common language for the development team. A shift in emphasis--refactoring not just the code but the model underlying the code--in combination with the frequent iterations of Agile development leads to deeper insight into domains and enhanced communication between domain expert and programmer. Domain-Driven Design then builds on this foundation, and addresses modeling and design for complex systems and larger organizations.Specific topics covered include:Getting all team members to speak the same language Connecting model and implementation more deeply Sharpening key distinctions in a model Managing the lifecycle of a domain object Writing domain code that is safe to combine in elaborate ways Making complex code obvious and predictable Formulating a domain vision statement Distilling the core of a complex domain Digging out implicit concepts needed in the model Applying analysis patterns Relating design patterns to the model Maintaining model integrity in a large system Dealing with coexisting models on the same project Organizing systems with large-scale structures Recognizing and responding to modeling breakthroughs With this book in hand, object-oriented developers, system analysts, and designers will have the guidance they need to organize and focus their work, create rich and useful domain models, and leverage those models into quality, long-lasting software implementations.

Learning From Data: A Short Course


Yaser S. Abu-Mostafa - 2012
    Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.

Thinking with Data


Max Shron - 2014
    In this practical guide, data strategy consultant Max Shron shows you how to put the why before the how, through an often-overlooked set of analytical skills.Thinking with Data helps you learn techniques for turning data into knowledge you can use. You’ll learn a framework for defining your project, including the data you want to collect, and how you intend to approach, organize, and analyze the results. You’ll also learn patterns of reasoning that will help you unveil the real problem that needs to be solved.Learn a framework for scoping data projectsUnderstand how to pin down the details of an idea, receive feedback, and begin prototypingUse the tools of arguments to ask good questions, build projects in stages, and communicate resultsExplore data-specific patterns of reasoning and learn how to build more useful argumentsDelve into causal reasoning and learn how it permeates data workPut everything together, using extended examples to see the method of full problem thinking in action

The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling


Ralph Kimball - 1996
    Here is a complete library of dimensional modeling techniques-- the most comprehensive collection ever written. Greatly expanded to cover both basic and advanced techniques for optimizing data warehouse design, this second edition to Ralph Kimball's classic guide is more than sixty percent updated.The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including:* Retail sales and e-commerce* Inventory management* Procurement* Order management* Customer relationship management (CRM)* Human resources management* Accounting* Financial services* Telecommunications and utilities* Education* Transportation* Health care and insuranceBy the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.This book is also available as part of the Kimball's Data Warehouse Toolkit Classics Box Set (ISBN: 9780470479575) with the following 3 books:The Data Warehouse Toolkit, 2nd Edition (9780471200246)The Data Warehouse Lifecycle Toolkit, 2nd Edition (9780470149775)The Data Warehouse ETL Toolkit (9780764567575)

Algorithms


Robert Sedgewick - 1983
    This book surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use.The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts.The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants.Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.

Venture Deals


Brad Feld - 2011
    It happens because VCs are experts in financings and most entrepreneurs are not. Brad and Jason are out to fix that problem with Venture Deals. This book is long overdue and badly needed."—Fred Wilson, Managing Partner, Union Square Ventures"Feld and Mendelson pack a graduate-level course into this energetic and accessible book.?The authors' frank style and incisive insight make this a must-read for high-growth company entrepreneurs, early-stage investors, and graduate students.?Start here if you want to understand venture capital deal structure and strategies.?I enthusiastically recommend."—Brad Bernthal, CU Boulder, Associate Clinical Professor ofLaw, Technology Policy, Entrepreneurial Law"A must-read book for entrepreneurs.?Brad and Jason demystify the overly complex world of term sheets and M&A, cutting through the legalese and focusing on what really matters.?That's a good thing not just for entrepreneurs, but also for venture capitalists, angels, and lawyers.?Having an educated entrepreneur on the other side of the table means you spend your time negotiating the important issues and ultimately get to the right deal faster."—Greg Gottesman, Managing Director, Madrona Venture Group"Venture Deals is a must-read for any entrepreneur contemplating or currently leading a venture-backed company. Brad and Jason are highly respected investors who shoot straight from the hip and tell it like it is, bringing a level of transparency to a process that is rarely well understood. It's like having a venture capitalist as a best friend who is looking out for your best interests and happy to answer all of your questions."—Emily Mendell, Vice President of Communications,National Venture Capital Association"The adventure of starting and growing a company can be exhilarating or excruciating—or both. Feld and Mendelson have done a masterful job of shedding light on what can either become one of the most helpful or dreadful experiences for entrepreneurs—accepting venture capital into their firm. This book takes the lid off the black box and helps entrepreneurs understand the economics and control provisions of working with a venture partner."—Lesa Mitchell, Vice President, Advancing Innovation, Kauffman Foundation

Visualize This: The FlowingData Guide to Design, Visualization, and Statistics


Nathan Yau - 2011
    Wouldn't it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to gather, parse, and format data and then design high quality graphics that help you explore and present patterns, outliers, and relationships.Presents a unique approach to visualizing and telling stories with data, from a data visualization expert and the creator of flowingdata.com, Nathan Yau Offers step-by-step tutorials and practical design tips for creating statistical graphics, geographical maps, and information design to find meaning in the numbers Details tools that can be used to visualize data-native graphics for the Web, such as ActionScript, Flash libraries, PHP, and JavaScript and tools to design graphics for print, such as R and Illustrator Contains numerous examples and descriptions of patterns and outliers and explains how to show them Visualize This demonstrates how to explain data visually so that you can present your information in a way that is easy to understand and appealing.