Book picks similar to
Introduction to Mathematical Statistics by Robert V. Hogg
statistics
mathematics
math
textbooks
Advanced Engineering Mathematics
Erwin Kreyszig - 1968
The new edition provides invitations - not requirements - to use technology, as well as new conceptual problems, and new projects that focus on writing and working in teams.
Mathematical Statistics and Data Analysis
John A. Rice - 1988
The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts which are set in abstract settings.
The R Book
Michael J. Crawley - 2007
The R language is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply many statistical techniques that would be impossible without such software to help implement such large data sets.
Probability and Statistics
Morris H. DeGroot - 1975
Other new features include a chapter on simulation, a section on Gibbs sampling, what you should know boxes at the end of each chapter, and remarks to highlight difficult concepts.
Econometric Analysis of Cross Section and Panel Data
Jeffrey M. Wooldridge - 2001
The book makes clear that applied microeconometrics is about the estimation of marginal and treatment effects, and that parametric estimation is simply a means to this end. It also clarifies the distinction between causality and statistical association. The book focuses specifically on cross section and panel data methods. Population assumptions are stated separately from sampling assumptions, leading to simple statements as well as to important insights. The unified approach to linear and nonlinear models and to cross section and panel data enables straightforward coverage of more advanced methods. The numerous end-of-chapter problems are an important component of the book. Some problems contain important points not fully described in the text, and others cover new ideas that can be analyzed using tools presented in the current and previous chapters. Several problems require the use of the data sets located at the author's website.
Mathematical Analysis
Tom M. Apostol - 1957
It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis.
Ordinary Differential Equations
Morris Tenenbaum - 1985
Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications
Nassim Nicholas Taleb - 2020
Switching from thin tailed to fat tailed distributions requires more than "changing the color of the dress." Traditional asymptotics deal mainly with either n=1 or n=∞, and the real world is in between, under the "laws of the medium numbers"-which vary widely across specific distributions. Both the law of large numbers and the generalized central limit mechanisms operate in highly idiosyncratic ways outside the standard Gaussian or Levy-Stable basins of convergence. A few examples: - The sample mean is rarely in line with the population mean, with effect on "na�ve empiricism," but can be sometimes be estimated via parametric methods. - The "empirical distribution" is rarely empirical. - Parameter uncertainty has compounding effects on statistical metrics. - Dimension reduction (principal components) fails. - Inequality estimators (Gini or quantile contributions) are not additive and produce wrong results. - Many "biases" found in psychology become entirely rational under more sophisticated probability distributions. - Most of the failures of financial economics, econometrics, and behavioral economics can be attributed to using the wrong distributions. This book, the first volume of the Technical Incerto, weaves a narrative around published journal articles.
A Guide To Econometrics
Peter E. Kennedy - 1979
This overview has enabled students to make sense more easily of what instructors are doing when they produce proofs, theorems and formulas.
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Aurélien Géron - 2017
Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details
Essentials of Econometrics
Damodar N. Gujarati - 1998
This text provides a simple and straightforward introduction to econometrics for the beginner. The book is designed to help students understand econometric techniques through extensive examples, careful explanations, and a wide variety of problem material. In each of the editions, I have tried to incorporate major developments in the field in an intuitive and informative way without resort to matrix algebra, calculus, or statistics beyond the introductory level. The fourth edition continues that tradition.
Using Multivariate Statistics
Barbara G. Tabachnick - 1983
It givessyntax and output for accomplishing many analyses through the mostrecent releases of SAS, SPSS, and SYSTAT, some not available insoftware manuals. The book maintains its practical approach, stillfocusing on the benefits and limitations of applications of a techniqueto a data set -- when, why, and how to do it. Overall, it providesadvanced students with a timely and comprehensive introduction totoday's most commonly encountered statistical and multivariatetechniques, while assuming only a limited knowledge of higher-levelmathematics.
Calculus
Michael Spivak - 1967
His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Advanced Engineering Mathematics
Dennis G. Zill - 1992
A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0