Lost in Math: How Beauty Leads Physics Astray


Sabine Hossenfelder - 2018
    Whether pondering black holes or predicting discoveries at CERN, physicists believe the best theories are beautiful, natural, and elegant, and this standard separates popular theories from disposable ones. This is why, Sabine Hossenfelder argues, we have not seen a major breakthrough in the foundations of physics for more than four decades. The belief in beauty has become so dogmatic that it now conflicts with scientific objectivity: observation has been unable to confirm mindboggling theories, like supersymmetry or grand unification, invented by physicists based on aesthetic criteria. Worse, these "too good to not be true" theories are actually untestable and they have left the field in a cul-de-sac. To escape, physicists must rethink their methods. Only by embracing reality as it is can science discover the truth.

The Road to Reality: A Complete Guide to the Laws of the Universe


Roger Penrose - 2004
    From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.

The Quantum Universe: Everything That Can Happen Does Happen


Brian Cox - 2011
    Cox and Forshaw's contention? There is no need for quantum mechanics to be viewed this way. There is a lot of mileage in the 'weirdness' of the quantum world, and it often leads to confusion and, frankly, bad science. The Quantum Universe cuts through the Wu Li and asks what observations of the natural world made it necessary, how it was constructed, and why we are confident that, for all its apparent strangeness, it is a good theory.The quantum mechanics of The Quantum Universe provide a concrete model of nature that is comparable in its essence to Newton’s laws of motion, Maxwell’s theory of electricity and magnetism, and Einstein’s theory of relativity.

Proofs and Refutations: The Logic of Mathematical Discovery


Imre Lakatos - 1976
    Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.

The Sciences of the Artificial


Herbert A. Simon - 1969
    There are updates throughout the book as well. These take into account important advances in cognitive psychology and the science of design while confirming and extending the book's basic thesis: that a physical symbol system has the necessary and sufficient means for intelligent action. The chapter "Economic Reality" has also been revised to reflect a change in emphasis in Simon's thinking about the respective roles of organizations and markets in economic systems."People sometimes ask me what they should read to find out about artificial intelligence. Herbert Simon's book The Sciences of the Artificial is always on the list I give them. Every page issues a challenge to conventional thinking, and the layman who digests it well will certainly understand what the field of artificial intelligence hopes to accomplish. I recommend it in the same spirit that I recommend Freud to people who ask about psychoanalysis, or Piaget to those who ask about child psychology: If you want to learn about a subject, start by reading its founding fathers." -- George A. Miller

Ideas and Opinions


Albert Einstein - 1922
    The selections range from his earliest days as a theoretical physicist to his death in 1955; from such subjects as relativity, nuclear war or peace, and religion and science, to human rights, economics, and government.

The Theoretical Minimum: What You Need to Know to Start Doing Physics


Leonard Susskind - 2013
    In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

Diversity and Complexity


Scott E. Page - 2010
    A complex system--such as an economy or a tropical ecosystem--consists of interacting adaptive entities that produce dynamic patterns and structures. Diversity plays a different role in a complex system than it does in an equilibrium system, where it often merely produces variation around the mean for performance measures. In complex adaptive systems, diversity makes fundamental contributions to system performance.Scott Page gives a concise primer on how diversity happens, how it is maintained, and how it affects complex systems. He explains how diversity underpins system level robustness, allowing for multiple responses to external shocks and internal adaptations; how it provides the seeds for large events by creating outliers that fuel tipping points; and how it drives novelty and innovation. Page looks at the different kinds of diversity--variations within and across types, and distinct community compositions and interaction structures--and covers the evolution of diversity within complex systems and the factors that determine the amount of maintained diversity within a system. Provides a concise and accessible introduction Shows how diversity underpins robustness and fuels tipping points Covers all types of diversity The essential primer on diversity in complex adaptive systems

The Nature of Technology: What It Is and How It Evolves


W. Brian Arthur - 2009
    Brian Arthur puts forth the first complete theory of the origins and evolution of technology, in a major work that achieves for the invention of new technologies what Darwin’s theory achieved for the emergence of new species. Brian Arthur is a pioneer of complexity theory and the discoverer of the highly influential "theory of increasing returns," which took Silicon Valley by storm, famously explaining why some high-tech companies achieve breakaway success. Now, in this long-awaited and ground-breaking book, he solves the great outstanding puzzle of technology—where do transformative new technologies come from?—putting forth the first full theory of how new technologies emerge and offering a definitive answer to the mystery of why some cultures—Silicon Valley, Cambridge, England in the 1920s—are so extraordinarily inventive. He has discovered that rather than springing from insight moments of individual genius, new technologies arise in a process akin to evolution. Technology evolves by creating itself out of itself, much as a coral reef builds itself from activities of small organisms. Drawing on a wealth of examples, from the most ancient to cutting-edge inventions of today, Arthur takes readers on a delightful intellectual journey, bringing to life the wonders of this process of technological evolution. The Nature of Technology is the work of one of our greatest thinkers at the top of his game, composing a classic for our times that is sure to generate wide acclaim.

Thinking In Numbers: On Life, Love, Meaning, and Math


Daniel Tammet - 2012
    In Tammet's world, numbers are beautiful and mathematics illuminates our lives and minds. Using anecdotes, everyday examples, and ruminations on history, literature, and more, Tammet allows us to share his unique insights and delight in the way numbers, fractions, and equations underpin all our lives. Inspired by the complexity of snowflakes, Anne Boleyn's eleven fingers, or his many siblings, Tammet explores questions such as why time seems to speed up as we age, whether there is such a thing as an average person, and how we can make sense of those we love. Thinking In Numbers will change the way you think about math and fire your imagination to see the world with fresh eyes.

Fashionable Nonsense: Postmodern Intellectuals' Abuse of Science


Alan Sokal - 1997
    Here, Sokal teams up with Jean Bricmont to expose the abuse of scientific concepts in the writings of today's most fashionable postmodern thinkers. From Jacques Lacan and Julia Kristeva to Luce Irigaray and Jean Baudrillard, the authors document the errors made by some postmodernists using science to bolster their arguments and theories. Witty and closely reasoned, Fashionable Nonsense dispels the notion that scientific theories are mere "narratives" or social constructions, and explored the abilities and the limits of science to describe the conditions of existence.

The Fractal Geometry of Nature


Benoît B. Mandelbrot - 1977
    The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.

The Tree of Knowledge: The Biological Roots of Human Understanding


Humberto R. Maturana - 1984
    Its authors present a new view of cognition that has important social and ethical implications, for, they assert, the only world we humans can have is the one we create together through the actions of our coexistence. Written for a general audience as well as for students, scholars, and scientists and abundantly illustrated with examples from biology, linguistics, and new social and cultural phenomena, this revised edition includes a new afterword by Dr. Varela, in which he discusses the effect the book has had in the years since its first publication.

Incomplete Nature: How Mind Emerged from Matter


Terrence W. Deacon - 2011
    The "Theory of Everything" that appears to be emerging includes everything but us: the feelings, meanings, consciousness, and purposes that make us (and many of our animal cousins) what we are. These most immediate and incontrovertible phenomena are left unexplained by the natural sciences because they lack the physical properties—such as mass, momentum, charge, and location—that are assumed to be necessary for something to have physical consequences in the world. This is an unacceptable omission. We need a "theory of everything" that does not leave it absurd that we exist.Incomplete Nature begins by accepting what other theories try to deny: that, although mental contents do indeed lack these material-energetic properties, they are still entirely products of physical processes and have an unprecedented kind of causal power that is unlike anything that physics and chemistry alone have so far explained. Paradoxically, it is the intrinsic incompleteness of these semiotic and teleological phenomena that is the source of their unique form of physical influence in the world. Incomplete Nature meticulously traces the emergence of this special causal capacity from simple thermodynamics to self-organizing dynamics to living and mental dynamics, and it demonstrates how specific absences (or constraints) play the critical causal role in the organization of physical processes that generate these properties.The book's radically challenging conclusion is that we are made of these specific absenses—such stuff as dreams are made on—and that what is not immediately present can be as physically potent as that which is. It offers a figure/background shift that shows how even meanings and values can be understood as legitimate components of the physical world.

Simply Complexity: A Clear Guide to Complexity Theory


Neil Johnson - 2007
    Using it, scientists can find order emerging from seemingly random interactions of all kinds, from something as simple as flipping coins through to more challenging problems such as the patterns in modern jazz, the growth of cancer tumours, and predicting shopping habits.