Book picks similar to
Statistics in a Nutshell: A Desktop Quick Reference by Sarah Boslaugh
reference
statistics
math
data
Introduction to Machine Learning
Ethem Alpaydin - 2004
Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, recognize faces or spoken speech, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. "Introduction to Machine Learning" is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. It discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The book can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.After an introduction that defines machine learning and gives examples of machine learning applications, the book covers supervised learning, Bayesian decision theory, parametric methods, multivariate methods, dimensionality reduction, clustering, nonparametric methods, decision trees, linear discrimination, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, combining multiple learners, and reinforcement learning.
Python Crash Course: A Hands-On, Project-Based Introduction to Programming
Eric Matthes - 2015
You'll also learn how to make your programs interactive and how to test your code safely before adding it to a project. In the second half of the book, you'll put your new knowledge into practice with three substantial projects: a Space Invaders-inspired arcade game, data visualizations with Python's super-handy libraries, and a simple web app you can deploy online.As you work through Python Crash Course, you'll learn how to: Use powerful Python libraries and tools, including matplotlib, NumPy, and PygalMake 2D games that respond to keypresses and mouse clicks, and that grow more difficult as the game progressesWork with data to generate interactive visualizationsCreate and customize simple web apps and deploy them safely onlineDeal with mistakes and errors so you can solve your own programming problemsIf you've been thinking seriously about digging into programming, Python Crash Course will get you up to speed and have you writing real programs fast. Why wait any longer? Start your engines and code!
Introductory Statistics with R
Peter Dalgaard - 2002
It can be freely downloaded and it works on multiple computer platforms. This book provides an elementary introduction to R. In each chapter, brief introductory sections are followed by code examples and comments from the computational and statistical viewpoint. A supplementary R package containing the datasets can be downloaded from the web.
The Signal and the Noise: Why So Many Predictions Fail—But Some Don't
Nate Silver - 2012
He solidified his standing as the nation's foremost political forecaster with his near perfect prediction of the 2012 election. Silver is the founder and editor in chief of FiveThirtyEight.com. Drawing on his own groundbreaking work, Silver examines the world of prediction, investigating how we can distinguish a true signal from a universe of noisy data. Most predictions fail, often at great cost to society, because most of us have a poor understanding of probability and uncertainty. Both experts and laypeople mistake more confident predictions for more accurate ones. But overconfidence is often the reason for failure. If our appreciation of uncertainty improves, our predictions can get better too. This is the "prediction paradox": The more humility we have about our ability to make predictions, the more successful we can be in planning for the future.In keeping with his own aim to seek truth from data, Silver visits the most successful forecasters in a range of areas, from hurricanes to baseball, from the poker table to the stock market, from Capitol Hill to the NBA. He explains and evaluates how these forecasters think and what bonds they share. What lies behind their success? Are they good-or just lucky? What patterns have they unraveled? And are their forecasts really right? He explores unanticipated commonalities and exposes unexpected juxtapositions. And sometimes, it is not so much how good a prediction is in an absolute sense that matters but how good it is relative to the competition. In other cases, prediction is still a very rudimentary-and dangerous-science.Silver observes that the most accurate forecasters tend to have a superior command of probability, and they tend to be both humble and hardworking. They distinguish the predictable from the unpredictable, and they notice a thousand little details that lead them closer to the truth. Because of their appreciation of probability, they can distinguish the signal from the noise.
Introduction to Mathematical Thinking
Keith Devlin - 2012
This is not the same as “doing math.” The latter usually involves the application of formulas, procedures, and symbolic manipulations; mathematical thinking is a powerful way of thinking about things in the world -- logically, analytically, quantitatively, and with precision. It is not a natural way of thinking, but it can be learned. Mathematicians, scientists, and engineers need to “do math,” and it takes many years of college-level education to learn all that is required. Mathematical thinking is valuable to everyone, and can be mastered in about six weeks by anyone who has completed high school mathematics. Mathematical thinking does not have to be about mathematics at all, but parts of mathematics provide the ideal target domain to learn how to think that way, and that is the approach taken by this short but valuable book. The book is written primarily for first and second year students of science, technology, engineering, and mathematics (STEM) at colleges and universities, and for high school students intending to study a STEM subject at university. Many students encounter difficulty going from high school math to college-level mathematics. Even if they did well at math in school, most are knocked off course for a while by the shift in emphasis, from the K-12 focus on mastering procedures to the “mathematical thinking” characteristic of much university mathematics. Though the majority survive the transition, many do not. To help them make the shift, colleges and universities often have a “transition course.” This book could serve as a textbook or a supplementary source for such a course. Because of the widespread applicability of mathematical thinking, however, the book has been kept short and written in an engaging style, to make it accessible to anyone who seeks to extend and improve their analytic thinking skills. Going beyond a basic grasp of analytic thinking that everyone can benefit from, the STEM student who truly masters mathematical thinking will find that college-level mathematics goes from being confusing, frustrating, and at times seemingly impossible, to making sense and being hard but doable. Dr. Keith Devlin is a professional mathematician at Stanford University and the author of 31 previous books and over 80 research papers. His books have earned him many awards, including the Pythagoras Prize, the Carl Sagan Award, and the Joint Policy Board for Mathematics Communications Award. He is known to millions of NPR listeners as “the Math Guy” on Weekend Edition with Scott Simon. He writes a popular monthly blog “Devlin’s Angle” for the Mathematical Association of America, another blog under the name “profkeithdevlin”, and also blogs on various topics for the Huffington Post.
Introductory Econometrics: A Modern Approach
Jeffrey M. Wooldridge - 1999
It bridges the gap between the mechanics of econometrics and modern applications of econometrics by employing a systematic approach motivated by the major problems facing applied researchers today. Throughout the text, the emphasis on examples gives a concrete reality to economic relationships and allows treatment of interesting policy questions in a realistic and accessible framework.
Think Like a Programmer: An Introduction to Creative Problem Solving
V. Anton Spraul - 2012
In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.
Statistics for Dummies
Deborah J. Rumsey - 2003
. ." and "The data bear this out. . . ." But the field of statistics is not just about data. Statistics is the entire process involved in gathering evidence to answer questions about the world, in cases where that evidence happens to be numerical data. Statistics For Dummies is for everyone who wants to sort through and evaluate the incredible amount of statistical information that comes to them on a daily basis. (You know the stuff: charts, graphs, tables, as well as headlines that talk about the results of the latest poll, survey, experiment, or other scientific study.) This book arms you with the ability to decipher and make important decisions about statistical results, being ever aware of the ways in which people can mislead you with statistics. Get the inside scoop on number-crunching nuances, plus insight into how you canDetermine the odds Calculate a standard score Find the margin of error Recognize the impact of polls Establish criteria for a good survey Make informed decisions about experiments This down-to-earth reference is chock-full of real examples from real sources that are relevant to your everyday life: from the latest medical breakthroughs, crime studies, and population trends to surveys on Internet dating, cell phone use, and the worst cars of the millennium. Statistics For Dummies departs from traditional statistics texts, references, supplement books, and study guides in the following ways:Practical and intuitive explanations of statistical concepts, ideas, techniques, formulas, and calculations. Clear and concise step-by-step procedures that intuitively explain how to work through statistics problems. Upfront and honest answers to your questions like, "What does this really mean?" and "When and how I will ever use this?" Chances are, Statistics For Dummies will be your No. 1 resource for discovering how numerical data figures into your corner of the universe.
Big data @ work : dispelling the myths, uncovering the opportunities
Thomas H. Davenport - 2014
The author was—at first.When the term “big data” first came on the scene, bestselling author Tom Davenport (Competing on Analytics, Analytics at Work) thought it was just another example of technology hype. But his research in the years that followed changed his mind.Now, in clear, conversational language, Davenport explains what big data means—and why everyone in business needs to know about it. Big Data at Work covers all the bases: what big data means from a technical, consumer, and management perspective; what its opportunities and costs are; where it can have real business impact; and which aspects of this hot topic have been oversold.This book will help you understand:• Why big data is important to you and your organization• What technology you need to manage it• How big data could change your job, your company, and your industry• How to hire, rent, or develop the kinds of people who make big data work• The key success factors in implementing any big data project• How big data is leading to a new approach to managing analyticsWith dozens of company examples, including UPS, GE, Amazon, United Healthcare, Citigroup, and many others, this book will help you seize all opportunities—from improving decisions, products, and services to strengthening customer relationships. It will show you how to put big data to work in your own organization so that you too can harness the power of this ever-evolving new resource.
Computer Age Statistical Inference: Algorithms, Evidence, and Data Science
Bradley Efron - 2016
'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Emergence: The Connected Lives of Ants, Brains, Cities, and Software
Steven Johnson - 2001
Explaining why the whole is sometimes smarter than the sum of its parts, Johnson presents surprising examples of feedback, self-organization, and adaptive learning. How does a lively neighborhood evolve out of a disconnected group of shopkeepers, bartenders, and real estate developers? How does a media event take on a life of its own? How will new software programs create an intelligent World Wide Web? In the coming years, the power of self-organization -- coupled with the connective technology of the Internet -- will usher in a revolution every bit as significant as the introduction of electricity. Provocative and engaging, Emergence puts you on the front lines of this exciting upheaval in science and thought.
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
Jacob Cohen - 1975
Readers profit from its verbal-conceptual exposition and frequent use of examples.The applied emphasis provides clear illustrations of the principles and provides worked examples of the types of applications that are possible. Researchers learn how to specify regression models that directly address their research questions. An overview of the fundamental ideas of multiple regression and a review of bivariate correlation and regression and other elementary statistical concepts provide a strong foundation for understanding the rest of the text. The third edition features an increased emphasis on graphics and the use of confidence intervals and effect size measures, and an accompanying website with data for most of the numerical examples along with the computer code for SPSS, SAS, and SYSTAT, at www.psypress.com/9780805822236 .Applied Multiple Regression serves as both a textbook for graduate students and as a reference tool for researchers in psychology, education, health sciences, communications, business, sociology, political science, anthropology, and economics. An introductory knowledge of statistics is required. Self-standing chapters minimize the need for researchers to refer to previous chapters.
Python Algorithms: Mastering Basic Algorithms in the Python Language
Magnus Lie Hetland - 2010
Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques.The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself.
Infinity and the Mind: The Science and Philosophy of the Infinite
Rudy Rucker - 1981
Rucker acquaints us with Godel's rotating universe, in which it is theoretically possible to travel into the past, and explains an interpretation of quantum mechanics in which billions of parallel worlds are produced every microsecond. It is in the realm of infinity, he maintains, that mathematics, science, and logic merge with the fantastic. By closely examining the paradoxes that arise from this merging, we can learn a great deal about the human mind, its powers, and its limitations.Using cartoons, puzzles, and quotations to enliven his text, Rucker guides us through such topics as the paradoxes of set theory, the possibilities of physical infinities, and the results of Godel's incompleteness theorems. His personal encounters with Godel the mathematician and philosopher provide a rare glimpse at genius and reveal what very few mathematicians have dared to admit: the transcendent implications of Platonic realism.
Python Cookbook
David Beazley - 2002
Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions