Best of
Artificial-Intelligence

2004

On Intelligence


Jeff Hawkins - 2004
    Now he stands ready to revolutionize both neuroscience and computing in one stroke, with a new understanding of intelligence itself.Hawkins develops a powerful theory of how the human brain works, explaining why computers are not intelligent and how, based on this new theory, we can finally build intelligent machines.The brain is not a computer, but a memory system that stores experiences in a way that reflects the true structure of the world, remembering sequences of events and their nested relationships and making predictions based on those memories. It is this memory-prediction system that forms the basis of intelligence, perception, creativity, and even consciousness.In an engaging style that will captivate audiences from the merely curious to the professional scientist, Hawkins shows how a clear understanding of how the brain works will make it possible for us to build intelligent machines, in silicon, that will exceed our human ability in surprising ways.Written with acclaimed science writer Sandra Blakeslee, On Intelligence promises to completely transfigure the possibilities of the technology age. It is a landmark book in its scope and clarity.

The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma


Alan Turing - 2004
    In 1935, aged 22, he developed the mathematical theory upon which all subsequent stored-program digital computers are modeled.At the outbreak of hostilities with Germany in September 1939, he joined the Government Codebreaking team at Bletchley Park, Buckinghamshire and played a crucial role in deciphering Engima, the code used by the German armed forces to protect their radio communications. Turing's work on the versionof Enigma used by the German navy was vital to the battle for supremacy in the North Atlantic. He also contributed to the attack on the cyphers known as Fish, which were used by the German High Command for the encryption of signals during the latter part of the war. His contribution helped toshorten the war in Europe by an estimated two years.After the war, his theoretical work led to the development of Britain's first computers at the National Physical Laboratory and the Royal Society Computing Machine Laboratory at Manchester University.Turing was also a founding father of modern cognitive science, theorizing that the cortex at birth is an unorganized machine which through training becomes organized into a universal machine or something like it. He went on to develop the use of computers to model biological growth, launchingthe discipline now referred to as Artificial Life.The papers in this book are the key works for understanding Turing's phenomenal contribution across all these fields. The collection includes Turing's declassified wartime Treatise on the Enigma; letters from Turing to Churchill and to codebreakers; lectures, papers, and broadcasts which opened upthe concept of AI and its implications; and the paper which formed the genesis of the investigation of Artifical Life.

Neural Networks, Fuzzy Logic And Genetic Algorithms: Synthesis And Applications


S. Rajasekaran - 2004
    The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year postgraduate engineering levels.

Ant Colony Optimization


Marco Dorigo - 2004
    The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses.The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.

Dark Hero of the Information Age: In Search of Norbert Wiener, The Father of Cybernetics


Flo Conway - 2004
    His best-selling book, Cybernetics, catapulted him into the public spotlight, as did his chilling visions of the future and his ardent social activism. Based on a wealth of primary sources and exclusive access to Wiener's closest family members, friends, and colleagues, Dark Hero of the Information Age reveals this eccentric genius as an extraordinarily complex figure. No one interested in the intersection of technology and culture will want to miss this epic story of one of the twentieth century's most brilliant and colorful figures.

Geometry and Meaning


Dominic Widdows - 2004
    Currently, similar geometric models are being applied to another type of spaceā€”the conceptual space of information and meaning, where the contributions of Pythagoras and Einstein are a part of the landscape itself. The rich geometry of conceptual space can be glimpsed, for instance, in internet documents: while the documents themselves define a structure of visual layouts and point-to-point links, search engines create an additional structure by matching keywords to nearby documents in a spatial arrangement of content. What the Geometry of Meaning provides is a much-needed exploration of computational techniques to represent meaning and of the conceptual spaces on which these representations are founded.

Consciousness: Creeping Up on the Hard Problem


Jeffrey Gray - 2004
    Despite vast knowledge of the relationship between brain and behaviour, and rapid advances in our knowledge of how brain activity correlates with conscious experience, the answers to all three questions remain controversial, even mysterious. This important new book analyses these core issues and reviews the evidence from both introspection and experiment. To many its conclusions will be surprising and even unsettling: The entire perceived world is constructed by the brain. The relationship between the world we perceive and the underlying physical reality is not as close as we might think. conscious experience. Our conscious experience of our behaviour lags the behaviour itself by around a fifth of a second - we become aware of what we do only after we have done it. The lag in conscious experience applies also to the decision to act - we only become aware of our decisions after they have been formed. The self is as much a creation of the brain as is the rest of the perceived world. Written by a leading scientist, this analysis of how conscious experience relates to brain and behaviour is accessible and compelling. It will have major implications for our understanding of human nature.

Kinematic Self-Replicating Machines


Robert A. Freitas Jr. - 2004
    The principal focus here is on self-replicating machine systems. Most importantly, we are concerned with kinematic self-replicating machines: systems in which actual physical objects, not mere patterns of information, undertake their own replication. Following a brief burst of activity in the 1950s and 1980s, the field of kinematic replicating systems design received new interest in the 1990s with the emerging recognition of the feasibility of molecular nanotechnology. The field has experienced a renaissance of research activity since 1999 as researchers have come to recognize that replicating systems are simple enough to permit experimental laboratory demonstrations of working devices.

Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability


Marcus Hutter - 2004
    The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output stream. Intelligence is more complicated. It can have many faces like creativity, solving prob lems, pattern recognition, classification, learning, induction, deduction, build ing analogies, optimization, surviving in an environment, language processing, and knowledge. A formal definition incorporating every aspect of intelligence, however, seems difficult. Most, if not all known facets of intelligence can be formulated as goal driven or, more precisely, as maximizing some utility func tion. It is, therefore, sufficient to study goal-driven AI; e. g. the (biological) goal of animals and humans is to survive and spread. The goal of AI systems should be to be useful to humans."