A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity
Peter Collier - 2012
This user-friendly self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. The book is written using straightforward and accessible language, with clear derivations and explanations as well as numerous fully solved problems. For those with minimal mathematical background, the first chapter provides a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes and relativistic cosmology. Following the historic 2015 LIGO (Laser Interferometer Gravitational-Wave Observatory) detection, there is now an additional chapter on gravitational waves, ripples in the fabric of spacetime that potentially provide a revolutionary new way to study the universe. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes.Understand even the basics of Einstein's amazing theory and the world will never seem the same again. ContentsPrefaceIntroduction1 Foundation mathematics2 Newtonian mechanics3 Special relativity4 Introducing the manifold5 Scalars, vectors, one-forms and tensors6 More on curvature7 General relativity8 The Newtonian limit9 The Schwarzschild metric10 Schwarzschild black holes11 Cosmology12 Gravitational wavesAppendix: The Riemann curvature tensorBibliographyAcknowledgementsJanuary 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.
Classical Dynamics of Particles and Systems
Jerry B. Marion - 1970
Vector calculus is used extensively to explore topics.The Lagrangian formulation of mechanics is introduced early to show its powerful problem solving ability.. Modern notation and terminology are used throughout in support of the text's objective: to facilitate students' transition to advanced physics and the mathematical formalism needed for the quantum theory of physics. CLASSICAL DYNAMICS OF PARTICLES AND SYSTEMS can easily be used for a one- or two-semester course, depending on the instructor's choice of topics.
Fields of Color: The theory that escaped Einstein
Rodney A. Brooks - 2010
QFT is the only physics theory that makes sense and that dispels or resolves the paradoxes of relativity and quantum mechanics that have confused and mystified so many people.
Machine Learning: A Probabilistic Perspective
Kevin P. Murphy - 2012
Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Probability And Statistics For Engineering And The Sciences
Jay L. Devore - 1982
In this book, a wealth of exercises are provided throughout each section, designed to reinforce learning and the logical comprehension of topics. The use of real data is incorporated much more extensively than in any other book on the market. Consist of strong coverage of computer-based methods, especially in the coverage of analysis of variance and regression. This text stresses mastery of methods most often used in medical research, with specific reference to actual medical literature and actual medical research. The approach minimizes mathematical formulation, yet gives complete explanations of all important concepts. Every new concept is systematically developed through completely worked-out examples from current medical research problems. Computer output is used to illustrate concepts when appropriate.
Python Data Science Handbook: Tools and Techniques for Developers
Jake Vanderplas - 2016
Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Think Python
Allen B. Downey - 2002
It covers the basics of computer programming, including variables and values, functions, conditionals and control flow, program development and debugging. Later chapters cover basic algorithms and data structures.
Neuroscience: Exploring the Brain
Mark F. Bear - 1995
This edition provides increased coverage of taste and smell, circadian rhythms, brain development, and developmental disorders and includes new information on molecular mechanisms and functional brain imaging. Path of Discovery boxes, written by leading researchers, highlight major current discoveries. In addition, readers will be able to assess their knowledge of neuroanatomy with the Illustrated Guide to Human Neuroanatomy, which includes a perforated self-testing workbook.This edition's robust ancillary package includes a bound-in student CD-ROM, an Instructor's Resource CD-ROM, and resources online.
Principles of Neural Science
Eric R. Kandel - 1981
It discusses neuroanatomy, cell and molecular mechanisms and signaling through a cognitive approach to behaviour. It features an expanded treatment of the nervous system, neurological and psychiatric diseases and perception.
Epidemiology for Public Health Practice
Robert H. Friis - 1996
With extensive treatment of the heart of epidemiology-from study designs to descriptive epidemiology to quantitative measures-this reader-friendly text is accessible and interesting to a wide range of beginning students in all health-related disciplines. A unique focus is given to real-world applications of epidemiology and the development of skills that students can apply in subsequent course work and in the field. The text is also accompanied by a complete package of instructor and student resources available through a companion Web site.
Computational Geometry: Algorithms and Applications
Mark de Berg - 1997
The focus is on algorithms and hence the book is well suited for students in computer science and engineering. Motivation is provided from the application areas: all solutions and techniques from computational geometry are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. For students this motivation will be especially welcome. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement. All the basic techniques and topics from computational geometry, as well as several more advanced topics, are covered. The book is largely self-contained and can be used for self-study by anyone with a basic background in algorithms. In the second edition, besides revisions to the first edition, a number of new exercises have been added.
The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics
Clifford A. Pickover - 2009
Beginning millions of years ago with ancient “ant odometers” and moving through time to our modern-day quest for new dimensions, it covers 250 milestones in mathematical history. Among the numerous delights readers will learn about as they dip into this inviting anthology: cicada-generated prime numbers, magic squares from centuries ago, the discovery of pi and calculus, and the butterfly effect. Each topic gets a lavishly illustrated spread with stunning color art, along with formulas and concepts, fascinating facts about scientists’ lives, and real-world applications of the theorems.
First You Build a Cloud: And Other Reflections on Physics as a Way of Life
K.C. Cole - 1999
In First You Build a Cloud, K. C. Cole provides cogent explanations through animated prose, metaphors, and anecdotes, allowing us to comprehend the nuances of physics-gravity and light, color and shape, quarks and quasars, particles and stars, force and strength. We also come to see how the physical world is so deeply intertwined with the ways in which we think about culture, poetry, and philosophy. Cole, one of our preeminent science writers, serves as a guide into the world of such legendary scientific minds as Richard Feynman, Victor Weisskopf, brothers Frank Oppenheimer and J. Robert Oppenheimer, Philip Morrison, Vera Kistiakowsky, and Stephen Jay Gould.
Schaum's Outline of Differential Equations
Richard Bronson - 2006
Thoroughly updated, this edition offers new, faster techniques for solving differential equations generated by the emergence of high-speed computers.
Systems Engineering and Analysis
Benjamin S. Blanchard - 1981
Each