Analysis I


Terence Tao - 2006
    

Real Analysis


H.L. Royden - 1963
    Dealing with measure theory and Lebesque integration, this is an introductory graduate text.

Introductory Functional Analysis with Applications


Erwin Kreyszig - 1978
    With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists.Currently available in the Series: Emil ArtinGeometnc Algebra R. W. CarterSimple Groups Of Lie Type Richard CourantDifferential and Integrai Calculus. Volume I Richard CourantDifferential and Integral Calculus. Volume II Richard Courant & D. HilbertMethods of Mathematical Physics, Volume I Richard Courant & D. HilbertMethods of Mathematical Physics. Volume II Harold M. S. CoxeterIntroduction to Modern Geometry. Second Edition Charles W. Curtis, Irving ReinerRepresentation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartzunear Operators. Part One. General Theory Nelson Dunford. Jacob T. SchwartzLinear Operators, Part Two. Spectral Theory--Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. SchwartzLinear Operators. Part Three. Spectral Operators Peter HenriciApplied and Computational Complex Analysis. Volume I--Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang WuA Course in Modern Algebra Harry HochstadtIntegral Equations Erwin KreyszigIntroductory Functional Analysis with Applications P. M. PrenterSplines and Variational Methods C. L. SiegelTopics in Complex Function Theory. Volume I --Elliptic Functions and Uniformizatton Theory C. L. SiegelTopics in Complex Function Theory. Volume II --Automorphic and Abelian Integrals C. L. SiegelTopics In Complex Function Theory. Volume III --Abelian Functions & Modular Functions of Several Variables J. J. StokerDifferential Geometry

Naive Set Theory


Paul R. Halmos - 1960
    This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.

Calculus Made Easy


Silvanus Phillips Thompson - 1910
    With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.

Discrete Mathematics and Its Applications


Kenneth H. Rosen - 2000
    These themes include mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and enhanced problem-solving skills through modeling. Its intent is to demonstrate the relevance and practicality of discrete mathematics to all students. The Fifth Edition includes a more thorough and linear presentation of logic, proof types and proof writing, and mathematical reasoning. This enhanced coverage will provide students with a solid understanding of the material as it relates to their immediate field of study and other relevant subjects. The inclusion of applications and examples to key topics has been significantly addressed to add clarity to every subject. True to the Fourth Edition, the text-specific web site supplements the subject matter in meaningful ways, offering additional material for students and instructors. Discrete math is an active subject with new discoveries made every year. The continual growth and updates to the web site reflect the active nature of the topics being discussed. The book is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite.

Linear Algebra and Its Applications


Gilbert Strang - 1976
    While the mathematics is there, the effort is not all concentrated on proofs. Strang's emphasis is on understanding. He explains concepts, rather than deduces. This book is written in an informal and personal style and teaches real mathematics. The gears change in Chapter 2 as students reach the introduction of vector spaces. Throughout the book, the theory is motivated and reinforced by genuine applications, allowing pure mathematicians to teach applied mathematics.

Schaum's Outline of Linear Algebra


Seymour Lipschutz - 1968
    This guide provides explanations of eigenvalues, eigenvectors, linear transformations, linear equations, vectors, and matrices.

The Art of Electronics


Paul Horowitz - 1980
    Widely accepted as the authoritative text and reference on electronic circuit design, both analog and digital, this book revolutionized the teaching of electronics by emphasizing the methods actually used by circuit designers -- a combination of some basic laws, rules of thumb, and a large bag of tricks. The result is a largely nonmathematical treatment that encourages circuit intuition, brainstorming, and simplified calculations of circuit values and performance. The new Art of Electronics retains the feeling of informality and easy access that helped make the first edition so successful and popular. It is an ideal first textbook on electronics for scientists and engineers and an indispensable reference for anyone, professional or amateur, who works with electronic circuits.

Schaum's Outline of Complex Variables


Murray R. Spiegel - 1968
    Contains 640 problems including solutions; additional practice problems with answers; explanations of complex variable theory; coverage of applications of complex variables in engineering, physics, and elsewhere, with accompanying sample problems and solutions.

Mathematical Methods in the Physical Sciences


Mary L. Boas - 1967
    Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.

Calculus: Early Transcendental Functions


Ron Larson - 1900
    Two primary objectives guided the authors in the revision of this book: to develop precise, readable materials for students that clearly define and demonstrate concepts and rules of calculus; and to design comprehensive teaching resources for instructors that employ proven pedagogical techniques and save time. The Larson/Hostetler/Edwards Calculus program offers a solution to address the needs of any calculus course and any level of calculus student. Every edition from the first to the fourth of Calculus: Early Transcendental Functions, 4/e has made the mastery of traditional calculus skills a priority, while embracing the best features of new technology and, when appropriate, calculus reform ideas. Now, the Fourth Edition is part of the first calculus program to offer algorithmic homework and testing created in Maple so that answers can be evaluated with complete mathematical accuracy.

Elementary Differential Equations And Boundary Value Problems


William E. Boyce - 1996
    Clear explanations are detailed with many current examples.

Principles of Sedimentology and Stratigraphy


Sam Boggs Jr. - 1994
    It emphasizes the ways in which the study of sedimentary rocks is used to interpret depositional environments, changes in ancient sea level, and other intriguing aspects of Earth’s history.

Elementary Number Theory


David M. Burton - 1976
    It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.