Best of
Mathematics

1960

Naive Set Theory


Paul R. Halmos - 1960
    This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.

The Trachtenberg Speed System of Basic Mathematics


Jakow Trachtenberg - 1960
    Described as the 'shorthand of mathematics', the Trachtenberg system only requires the ability to count from one to eleven. Using a series of simplified keys it allows anyone to master calculations, giving greater speed, ease in handling numbers and increased accuracy.Jakow Trachtenberg believed that everyone is born with phenomenal abilities to calculate. He devised a set of rules that allows every child to make multiplication, division, addition, subtraction and square-root calculations with unerring accuracy and at remarkable speed. It is the perfect way to gain confidence with numbers.

Continuous Geometry


John von Neumann - 1960
    In characterizing its properties, von Neumann founded the field of continuous geometry.This book, based on von Neumann's lecture notes, begins with the development of the axioms of continuous geometry, dimension theory, and--for the irreducible case--the function D(a). The properties of regular rings are then discussed, and a variety of results are presented for lattices that are continuous geometries, for which irreducibility is not assumed. For students and researchers interested in ring theory or projective geometries, this book is required reading.

Elements Of The History Of Mathematics


Nicolas Bourbaki - 1960
    Only the flow has been made independent of the Elements to which these Notes were attached; they are therefore, in principle, accessible to every reader who possesses a sound classical mathematical background, of undergraduate standard. Of course, the separate studies which make up this volume could not in any way pretend to sketch, even in a summary manner, a complete and con nected history of the development of Mathematics up to our day. Entire parts of classical mathematics such as differential Geometry, algebraic Geometry, the Calculus of variations, are only mentioned in passing; others, such as the theory of analytic functions, that of differential equations or partial differ ential equations, are hardly touched on; all the more do these gaps become more numerous and more important as the modern era is reached. It goes without saying that this is not a case of intentional omission; it is simply due to the fact that the corresponding chapters of the Elements have not yet been published. Finally the reader will find in these Notes practically no bibliographic or anecdotal information about the mathematicians in question; what has been attempted above all, for each theory, is to bring out as clearly as possible what were the guiding ideas, and how these ideas developed and reacted the ones on the others."

A Precis of Mathematical Logic


Józef Maria Bocheński - 1960
    In 1954 Dr. Albert Menne brought out a revised and somewhat enlarged edition in German (Grund riss der Logistik, F. Schoningh, Paderborn). In making my translation I have used both editions. For the most part I have followed the original French edition, since I thought there was some advantage in keeping the work as short as possible. However, I have included the more extensive historical notes of Dr. Menne, his bibliography, and the two sections on modal logic and the syntactical categories ( 25 and 27), which were not in the original. I have endeavored to correct the typo graphical errors that appeared in the original editions and have made a few additions to the bibliography. In making the translation I have profited more than words can tell from the ever-generous help of Fr. Bochenski while he was teaching at the University of Notre Dame during 1955-56. OTTO BIRD Notre Dame, 1959 I GENERAL PRINCIPLES O. INTRODUCTION 0. 1. Notion and history. Mathematical logic, also called 'logistic', .symbolic logic', the 'algebra of logic', and, more recently, simply 'formal logic', is the set of logical theories elaborated in the course of the last century with the aid of an artificial notation and a rigorously deductive method."