Medical Terminology For Health Professions
Ann Ehrlich - 1988
The See and Say pronunciation system makes pronouncing unfamiliar terms easy. Because word parts are integral to learning medical terminology, mastery of these "building blocks" is emphasized in every chapter. Organized by body system, chapters begin with an overview of the structures and functions of that system so you can relate these to the specialists, pathology, diagnostic, and treatment procedures that follow. Learning Exercises in each chapter offer a variety of formats that require written answers. Writing terms reinforces learning and provides practice to help master spelling and enhance comprehension.
Trauma Nursing Core Course Provider Manual ( Tncc )
Emergency Nurses Association - 2004
Emphasis is placed on the standardized and systematic process for initial assessment. It is the intent of the TNCC to enhance the nurse's ability to rapidly and accurately assess the patient's responses to the trauma event and to work within the context of a trauma team. It is anticipated that the knowledge and skills learned in the TNCC will ultimately contribute to a decrease in the morbidity and mortality associated with trauma. This Revised Printing of the new Sixth Edition of the TNCC's Provider Manual had been updated by members of the TNCC Revision Workgroup and trauma nursing experts in both the United States and internationally.
Elementary Statistics
Mario F. Triola - 1983
This text is highly regarded because of its engaging and understandable introduction to statistics. The author's commitment to providing student-friendly guidance through the material and giving students opportunities to apply their newly learned skills in a real-world context has made Elementary Statistics the #1 best-seller in the market.
Planning, Implementing, and Evaluating Health Promotion Programs: A Primer
James F. McKenzie - 1992
The Fifth Edition features updated information throughout, including new theories and models such as the Healthy Action Process Approach (HAPA) and the Community Readiness Model (CRM), sections on grant writing and preparing a budget, real-life examples of marketing principles and processes, and a new classification system for evaluation approaches and designs. Health Education, Health Promotion, Health Educators, and Program Planning, Models for Program Planning in Health Promotion, Starting the Planning Process, Assessing Needs, Measurement, Measures, Measurement Instruments and Sampling, Mission Statement, Goals, and Objectives, Theories and Models Commonly Used for Health Promotion Interventions, Interventions, Community Organizing and Community Building, Identification and Allocation of Resources, Marketing: Making Sure Programs Respond to Wants and Needs of Consumers, Implementation: Strategies and Associated Concerns, Evaluation: An Overview, Evaluation Approaches and Designs, Data Analysis and Reporting. Intended for those interested in learning the basics of planning, implementing, and evaluating health promotion programs
Signing Illustrated (Revised Edition): The Complete Learning Guide
Mickey Flodin - 2004
This easy-to-use guide is updated and expanded to include new computer and technology signs and offers a fast and simple approach to learning. Includes:- Vocabulary reviews- Fingerspelling exercises- Sign matching and memory aids- A complete glossary and a comprehensive index- Clear instructive drawings
Introduction to Geographic Information Systems [With CDROM]
Kang-Tsung Chang - 2001
Now in its 12th edition, it is still the market leader and is known for its scientific research base and its currency, comprehensiveness, and accuracy.
Statistics for Business & Economics
James T. McClave - 1991
Theoretical, yet applied. Statistics for Business and Economics, Eleventh Edition, gives you the best of both worlds. Using a rich array of applications from a variety of industries, McClave/Sincich/Benson clearly demonstrates how to use statistics effectively in a business environment.The book focuses on developing statistical thinking so the reader can better assess the credibility and value of inferences made from data. As consumers and future producers of statistical inferences, readers are introduced to a wide variety of data collection and analysis techniques to help them evaluate data and make informed business decisions. As with previous editions, this revision offers an abundance of applications with many new and updated exercises that draw on real business situations and recent economic events. The authors assume a background of basic algebra.
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
Fundamentals of Modern Manufacturing: Materials, Processes, and Systems
Mikell P. Groover - 2000
It follows a more quantitative and design-oriented approach than other texts in the market, helping readers gain a better understanding of important concepts. They'll also discover how material properties relate to the process variables in a given process as well as how to perform manufacturing science and quantitative engineering analysis of manufacturing processes.
Using Information Technology
Brian K. Williams - 1990
This text is user-focused and has been highly updated including topics, pictures and examples. The Williams text contains less theory and more application to engage students who might be more familiar with technology. Continually published and updated for over 15 years, Using Information Technology was the first text to foresee and define the impact of digital convergence--the fusion of computers and communications. It was also the first text to acknowledge the new priorities imposed by the Internet and World Wide Web and bring discussion of them from late in the course to the beginning. Today, it is directed toward the "Always On" generation that is at ease with digital technology--comfortable with iPhones, MySpace, Facebook, Twitter, Wikipedia, and the blogosphere--but not always savvy about its processes, possibilities, and liabilities. This 8th edition continues to address the two most significant challenges that instructors face in teaching this course: -Trying to make the course interesting and challenging, and -Trying to teach to students with a variety of computer backgrounds. In addition, this text correlates with Simnet Online for full integration of resources within the Computing Concepts course.
Elementary Statistics: Picturing the World
Ron Larson - 2002
Offering an approach with a visual/graphical emphasis, this text offers a number of examples on the premise that students learn best by doing. This book features an emphasis on interpretation of results and critical thinking over calculations.
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases