Book picks similar to
The Mathematics of Diffusion by John Crank
freely-available
maths-and-self-study
textbooks
microbeam
How to Think Like a Mathematician
Kevin Houston - 2009
Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.
Neural Networks for Pattern Recognition
Christopher M. Bishop - 1996
After introducing the basic concepts, the book examines techniques for modeling probability density functions and the properties and merits of the multi-layerperceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.
Combinatorial Optimization: Algorithms and Complexity
Christos H. Papadimitriou - 1998
All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering. "Mathematicians wishing a self-contained introduction need look no further." — American Mathematical Monthly.
Pattern Classification
David G. Stork - 1973
Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
The Principles of Quantum Mechanics
Paul A.M. Dirac - 1958
No graduate student of quantum theory should leave it unread"--W.C Schieve, University of Texas
An Introduction to Group Work Practice
Ronald W. Toseland - 1984
Students will receive a grounding in areas that vary from treatment to organizational and community settings. This edition also includes of new case studies, practice examples and guiding principles.
Understanding Digital Signal Processing
Richard G. Lyons - 1996
This second edition is appropriate as a supplementary (companion) text for any college-level course covering digital signal processing.
Complex Variables and Applications
James Ward Brown - 1960
It uses examples and exercise sets, with clear explanations of problem-solving techniqes and material on the further theory of functions.
Introduction to Electrodynamics
David J. Griffiths - 1981
This work offers accesible coverage of the fundamentals of electrodynamics, enhanced with with discussion points, examples and exercises.
Pathophysiology Made Incredibly Easy!
Lippincott Williams & Wilkins - 1998
Chapters cover cancer, infection, immune disorders, genetics, and disorders of each body system, highlighting pathophysiologic processes, resulting signs and symptoms, diagnostic test findings, and current treatments. Reader-friendly features include illustrations, checklists, and full-color miniguides illustrating the pathophysiology of specific disorders.This edition has new full-color miniguides on cancer pathophysiology and neuropathology. A new Focus on Genetics feature identifies gene-related discoveries and their implications for treatment or diagnosis. Review questions and answers follow current NCLEX-RN® requirements and alternate-format questions are included.
Fearless Symmetry: Exposing the Hidden Patterns of Numbers
Avner Ash - 2006
But sometimes the solutions are not as interesting as the beautiful symmetric patterns that lead to them. Written in a friendly style for a general audience, Fearless Symmetry is the first popular math book to discuss these elegant and mysterious patterns and the ingenious techniques mathematicians use to uncover them.Hidden symmetries were first discovered nearly two hundred years ago by French mathematician �variste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination.The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.
Statistics in a Nutshell: A Desktop Quick Reference
Sarah Boslaugh - 2008
This book gives you a solid understanding of statistics without being too simple, yet without the numbing complexity of most college texts. You get a firm grasp of the fundamentals and a hands-on understanding of how to apply them before moving on to the more advanced material that follows. Each chapter presents you with easy-to-follow descriptions illustrated by graphics, formulas, and plenty of solved examples. Before you know it, you'll learn to apply statistical reasoning and statistical techniques, from basic concepts of probability and hypothesis testing to multivariate analysis. Organized into four distinct sections, Statistics in a Nutshell offers you:Introductory material: Different ways to think about statistics Basic concepts of measurement and probability theoryData management for statistical analysis Research design and experimental design How to critique statistics presented by others Basic inferential statistics: Basic concepts of inferential statistics The concept of correlation, when it is and is not an appropriate measure of association Dichotomous and categorical data The distinction between parametric and nonparametric statistics Advanced inferential techniques: The General Linear Model Analysis of Variance (ANOVA) and MANOVA Multiple linear regression Specialized techniques: Business and quality improvement statistics Medical and public health statistics Educational and psychological statistics Unlike many introductory books on the subject, Statistics in a Nutshell doesn't omit important material in an effort to dumb it down. And this book is far more practical than most college texts, which tend to over-emphasize calculation without teaching you when and how to apply different statistical tests. With Statistics in a Nutshell, you learn how to perform most common statistical analyses, and understand statistical techniques presented in research articles. If you need to know how to use a wide range of statistical techniques without getting in over your head, this is the book you want.
Organization Development: The Process Of Leading Organizational Change
Donald L. Anderson - 2009
Incorporating OD ethics and values into each chapter, Donald L. Anderson provides discussion of the real-world application of these theoretical ideas. In-depth case studies that follow major content chapters allow students to immediately apply what they have learned. In today's challenging environment of increased globalization, rapidly changing technologies, economic pressures, and expectations in the contemporary workforce, this book is an essential tool.