Book picks similar to
Indiscrete Thoughts by Gian-Carlo Rota
mathematics
science
math
philosophy
When Einstein Walked with Gödel: Excursions to the Edge of Thought
Jim Holt - 2018
With his trademark clarity and humor, Holt probes the mysteries of quantum mechanics, the quest for the foundations of mathematics, and the nature of logic and truth. Along the way, he offers intimate biographical sketches of celebrated and neglected thinkers, from the physicist Emmy Noether to the computing pioneer Alan Turing and the discoverer of fractals, Benoit Mandelbrot. Holt offers a painless and playful introduction to many of our most beautiful but least understood ideas, from Einsteinian relativity to string theory, and also invites us to consider why the greatest logician of the twentieth century believed the U.S. Constitution contained a terrible contradiction--and whether the universe truly has a future.
Incompleteness: The Proof and Paradox of Kurt Gödel
Rebecca Goldstein - 2005
"A gem…An unforgettable account of one of the great moments in the history of human thought." —Steven PinkerProbing the life and work of Kurt Gödel, Incompleteness indelibly portrays the tortured genius whose vision rocked the stability of mathematical reasoning—and brought him to the edge of madness.
Isaac Newton
James Gleick - 2003
When he died in London in 1727 he was so renowned he was given a state funeral—an unheard-of honor for a subject whose achievements were in the realm of the intellect. During the years he was an irascible presence at Trinity College, Cambridge, Newton imagined properties of nature and gave them names—mass, gravity, velocity—things our science now takes for granted. Inspired by Aristotle, spurred on by Galileo’s discoveries and the philosophy of Descartes, Newton grasped the intangible and dared to take its measure, a leap of the mind unparalleled in his generation.James Gleick, the author of Chaos and Genius, and one of the most acclaimed science writers of his generation, brings the reader into Newton’s reclusive life and provides startlingly clear explanations of the concepts that changed forever our perception of bodies, rest, and motion. Ideas so basic to the twenty-first century we literally take them for granted.
Is God a Mathematician?
Mario Livio - 2009
Is God a Mathematician? investigates why mathematics is as powerful as it is. From ancient times to the present, scientists and philosophers have marveled at how such a seemingly abstract discipline could so perfectly explain the natural world. More than that—mathematics has often made predictions, for example, about subatomic particles or cosmic phenomena that were unknown at the time, but later were proven to be true. Is mathematics ultimately invented or discovered? If, as Einstein insisted, mathematics is “a product of human thought that is independent of experience,” how can it so accurately describe and even predict the world around us? Physicist and author Mario Livio brilliantly explores mathematical ideas from Pythagoras to the present day as he shows us how intriguing questions and ingenious answers have led to ever deeper insights into our world. This fascinating book will interest anyone curious about the human mind, the scientific world, and the relationship between them.
Lectures on the Foundations of Mathematics, Cambridge 1939
Ludwig Wittgenstein - 1989
A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.
Fermat's Enigma
Simon Singh - 1997
xn + yn = zn, where n represents 3, 4, 5, ...no solution"I have discovered a truly marvelous demonstration of this proposition which this margin is too narrow to contain."With these words, the seventeenth-century French mathematician Pierre de Fermat threw down the gauntlet to future generations. What came to be known as Fermat's Last Theorem looked simple; proving it, however, became the Holy Grail of mathematics, baffling its finest minds for more than 350 years. In Fermat's Enigma--based on the author's award-winning documentary film, which aired on PBS's "Nova"--Simon Singh tells the astonishingly entertaining story of the pursuit of that grail, and the lives that were devoted to, sacrificed for, and saved by it. Here is a mesmerizing tale of heartbreak and mastery that will forever change your feelings about mathematics.
Mathematical Mysteries: The Beauty and Magic of Numbers
Calvin C. Clawson - 1996
This recreational math book takes the reader on a fantastic voyage into the world of natural numbers. From the earliest discoveries of the ancient Greeks to various fundamental characteristics of the natural number sequence, Clawson explains fascinating mathematical mysteries in clear and easy prose. He delves into the heart of number theory to see and understand the exquisite relationships among natural numbers, and ends by exploring the ultimate mystery of mathematics: the Riemann hypothesis, which says that through a point in a plane, no line can be drawn parallel to a given line.While a professional mathematician's treatment of number theory involves the most sophisticated analytical tools, its basic ideas are surprisingly easy to comprehend. By concentrating on the meaning behind various equations and proofs and avoiding technical refinements, Mathematical Mysteries lets the common reader catch a glimpse of this wonderful and exotic world.
Fearless Symmetry: Exposing the Hidden Patterns of Numbers
Avner Ash - 2006
But sometimes the solutions are not as interesting as the beautiful symmetric patterns that lead to them. Written in a friendly style for a general audience, Fearless Symmetry is the first popular math book to discuss these elegant and mysterious patterns and the ingenious techniques mathematicians use to uncover them.Hidden symmetries were first discovered nearly two hundred years ago by French mathematician �variste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination.The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.
Mathematics: The Loss of Certainty
Morris Kline - 1980
Mathematics: The Loss of Certainty refutes that myth.
Ideas and Opinions
Albert Einstein - 1922
The selections range from his earliest days as a theoretical physicist to his death in 1955; from such subjects as relativity, nuclear war or peace, and religion and science, to human rights, economics, and government.
The Artist and the Mathematician: The Story of Nicolas Bourbaki, the Genius Mathematician Who Never Existed
Amir D. Aczel - 2006
Pure mathematics, the area of Bourbaki's work, seems on the surface to be an abstract field of human study with no direct connection with the real world. In reality, however, it is closely intertwined with the general culture that surrounds it. Major developments in mathematics have often followed important trends in popular culture; developments in mathematics have acted as harbingers of change in the surrounding human culture. The seeds of change, the beginnings of the revolution that swept the Western world in the early decades of the twentieth century — both in mathematics and in other areas — were sown late in the previous century. This is the story both of Bourbaki and the world that created him in that time. It is the story of an elaborate intellectual joke — because Bourbaki, one of the foremost mathematicians of his day — never existed.
Q.E.D.: Beauty in Mathematical Proof
Burkard Polster - 2004
presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.
Infinity and the Mind: The Science and Philosophy of the Infinite
Rudy Rucker - 1981
Rucker acquaints us with Godel's rotating universe, in which it is theoretically possible to travel into the past, and explains an interpretation of quantum mechanics in which billions of parallel worlds are produced every microsecond. It is in the realm of infinity, he maintains, that mathematics, science, and logic merge with the fantastic. By closely examining the paradoxes that arise from this merging, we can learn a great deal about the human mind, its powers, and its limitations.Using cartoons, puzzles, and quotations to enliven his text, Rucker guides us through such topics as the paradoxes of set theory, the possibilities of physical infinities, and the results of Godel's incompleteness theorems. His personal encounters with Godel the mathematician and philosopher provide a rare glimpse at genius and reveal what very few mathematicians have dared to admit: the transcendent implications of Platonic realism.
Everything and More: A Compact History of Infinity
David Foster Wallace - 2003
Now he brings his considerable talents to the history of one of math's most enduring puzzles: the seemingly paradoxical nature of infinity.Is infinity a valid mathematical property or a meaningless abstraction? The nineteenth-century mathematical genius Georg Cantor's answer to this question not only surprised him but also shook the very foundations upon which math had been built. Cantor's counterintuitive discovery of a progression of larger and larger infinities created controversy in his time and may have hastened his mental breakdown, but it also helped lead to the development of set theory, analytic philosophy, and even computer technology.Smart, challenging, and thoroughly rewarding, Wallace's tour de force brings immediate and high-profile recognition to the bizarre and fascinating world of higher mathematics.
The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics
Marcus du Sautoy - 2003
The subject was the mystery of prime numbers. At the heart of the presentation was an idea that Riemann had not yet proved but one that baffles mathematicians to this day.Solving the Riemann Hypothesis could change the way we do business, since prime numbers are the lynchpin for security in banking and e-commerce. It would also have a profound impact on the cutting-edge of science, affecting quantum mechanics, chaos theory, and the future of computing. Leaders in math and science are trying to crack the elusive code, and a prize of $1 million has been offered to the winner. In this engaging book, Marcus du Sautoy reveals the extraordinary history behind the holy grail of mathematics and the ongoing quest to capture it.