Computer Age Statistical Inference: Algorithms, Evidence, and Data Science


Bradley Efron - 2016
    'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Tell Me The Odds: A 15 Page Introduction To Bayes Theorem


Scott Hartshorn - 2017
    Essentially, you make an initial guess, and then get more data to improve it. Bayes Theorem, or Bayes Rule, has a ton of real world applications, from estimating your risk of a heart attack to making recommendations on Netflix But It Isn't That Complicated This book is a short introduction to Bayes Theorem. It is only 15 pages long, and is intended to show you how Bayes Theorem works as quickly as possible. The examples are intentionally kept simple to focus solely on Bayes Theorem without requiring that the reader know complicated probability distributions. If you want to learn the basics of Bayes Theorem as quickly as possible, with some easy to duplicate examples, this is a good book for you.

Time Series Analysis


James Douglas Hamilton - 1994
    This book synthesizes these recent advances and makes them accessible to first-year graduate students. James Hamilton provides the first adequate text-book treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems (including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter) in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results.The book is intended to provide students and researchers with a self-contained survey of time series analysis. It starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers.-- "Journal of Economics"

Forecasting: Principles and Practice


Rob J. Hyndman - 2013
    Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.

Art of Stock Investing: Leverage on great companies, churning more and more profits every year


Manikandan Ramalingam - 2017
     Leverage on great companies, churning more and more profits every year

Applied Linear Regression Models- 4th Edition with Student CD (McGraw Hill/Irwin Series: Operations and Decision Sciences)


Michael H. Kutner - 2003
    Cases, datasets, and examples allow for a more real-world perspective and explore relevant uses of regression techniques in business today.

The Science of Stock Market Investment - Practical Guide to Intelligent Investors


Chellamuthu Kuppusamy - 2012
    There is nothing wrong with that desire. But you must have known the secrets of avoiding losses. Share Market is a field that has of late developed overwhelmingly. Millions of people invest in it with enthusiasm and are interested in knowing details about this grey area. Sadly, not everyone who invests in it earn profits. Some people who constantly learn end up earning, but those who do not know anything about it and put their trust on luck lose miserably. This book shows the way to avoid losses and increase gains in share market. This comprehensive book touches upon every aspect of stock market investment. A fantastic starting point for anyone aspiring to enter into the unknown world of share market. Even for investors who are already in the market, this book can serve a guide. People say, you either earn or learn in share market. This book preaches the secrets of learning and earning at the same time. This work takes you through an introduction about shares, functioning of share markets, relevance of stock market indices and different approaches for primary & secondary market investments. In also talks about the real qualities of an investor and how he differs from a speculator in the marketplace. Relationship between inflation & investments and the need for achieving inflation adjusted returns are stressed upon. Various stock selection processes, approaches to adapt for different market conditions and more more importantly the art of avoiding losses are discussed in details. You will learn how to analyse a company, its shares, market dynamics, how to value a business, what price to pay for a company etc. All important parameters, numbers and ratios are explained with interesting real time illustrations. Difference between value investing and growth oriented stock selection process is analysed thoroughly, Likewise, fundamental analysis and technical analysis are compared in a rational way. On top of these, this books describe the qualities that differentiate successful investors from ordinary ones. Those qualities are analysed in detail. More importantly, the book stresses the importance of identifying bad companies and unethical management, and teaches how to stay away from them.

Applied Multivariate Statistical Analysis


Richard A. Johnson - 1982
    of Wisconsin-Madison) and Wichern (Texas A&M U.) present the newest edition of this college text on the statistical methods for describing and analyzing multivariate data, designed for students who have taken two or more statistics courses. The fifth edition includes the addition of seve

Money & Capital Markets


Peter S. Rose - 1989
    This book discuses various major types of financial institutions and financial instruments present along with how and why the system of money and capital markets is changing. It also provides a descriptive explanation of how interest rates and security values are determined.

Statistical Inference


George Casella - 2001
    Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and are natural extensions and consequences of previous concepts. This book can be used for readers who have a solid mathematics background. It can also be used in a way that stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures for a variety of situations, and less concerned with formal optimality investigations.

Statistics for Business & Economics


James T. McClave - 1991
    Theoretical, yet applied. Statistics for Business and Economics, Eleventh Edition, gives you the best of both worlds. Using a rich array of applications from a variety of industries, McClave/Sincich/Benson clearly demonstrates how to use statistics effectively in a business environment.The book focuses on developing statistical thinking so the reader can better assess the credibility and value of inferences made from data. As consumers and future producers of statistical inferences, readers are introduced to a wide variety of data collection and analysis techniques to help them evaluate data and make informed business decisions. As with previous editions, this revision offers an abundance of applications with many new and updated exercises that draw on real business situations and recent economic events. The authors assume a background of basic algebra.

What Hedge Funds Really Do: An Introduction to Portfolio Management


Philip J. Romero - 2014
    We’ve comea long way since then. With this book, Drs. Romero and Balch liftthe veil from many of these once-opaque concepts in high-techfinance. We can all benefit from learning how the cooperationbetween wetware and software creates fitter models. This bookdoes a fantastic job describing how the latest advances in financialmodeling and data science help today’s portfolio managerssolve these greater riddles. —Michael Himmel, ManagingPartner, Essex Asset ManagementI applaud Phil Romero’s willingness to write about the hedgefund world, an industry that is very private, often flamboyant,and easily misunderstood. As with every sector of the investmentlandscape, the hedge fund industry varies dramaticallyfrom quantitative “black box” technology, to fundamental researchand old-fashioned stock picking. This book helps investorsdistinguish between these diverse opposites and understandtheir place in the new evolving world of finance. —Mick Elfers,Founder and Chief Investment Strategist, Irvington Capital

Introduction to Probability


Dimitri P. Bertsekas - 2002
    This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.

Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die


Eric Siegel - 2013
    Rather than a "how to" for hands-on techies, the book entices lay-readers and experts alike by covering new case studies and the latest state-of-the-art techniques.You have been predicted — by companies, governments, law enforcement, hospitals, and universities. Their computers say, "I knew you were going to do that!" These institutions are seizing upon the power to predict whether you're going to click, buy, lie, or die.Why? For good reason: predicting human behavior combats financial risk, fortifies healthcare, conquers spam, toughens crime fighting, and boosts sales.How? Prediction is powered by the world's most potent, booming unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn.Predictive analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future — lifting a bit of the fog off our hazy view of tomorrow — means pay dirt.In this rich, entertaining primer, former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: -What type of mortgage risk Chase Bank predicted before the recession. -Predicting which people will drop out of school, cancel a subscription, or get divorced before they are even aware of it themselves. -Why early retirement decreases life expectancy and vegetarians miss fewer flights. -Five reasons why organizations predict death, including one health insurance company. -How U.S. Bank, European wireless carrier Telenor, and Obama's 2012 campaign calculated the way to most strongly influence each individual. -How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! -How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. -How judges and parole boards rely on crime-predicting computers to decide who stays in prison and who goes free. -What's predicted by the BBC, Citibank, ConEd, Facebook, Ford, Google, IBM, the IRS, Match.com, MTV, Netflix, Pandora, PayPal, Pfizer, and Wikipedia. A truly omnipresent science, predictive analytics affects everyone, every day. Although largely unseen, it drives millions of decisions, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate.Predictive analytics transcends human perception. This book's final chapter answers the riddle: What often happens to you that cannot be witnessed, and that you can't even be sure has happened afterward — but that can be predicted in advance?Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.

Social Statistics for a Diverse Society


Chava Frankfort-Nachmias - 1996
    The authors help students learn key sociological concepts through real research examples related to the dynamic interplay of race, class, gender, and other social variables.