Book picks similar to
Spectral Methods of Automorphic Forms by Henryk Iwaniec
graduate-studies-in-mathematics
it-wikipedia
langlands-program
math
Introduction to Statistical Quality Control
Douglas C. Montgomery - 1985
It provides comprehensive coverage of the subject from basic principles to state-of-art concepts and applications. The objective is to give the reader a sound understanding of the principles and the basis for applying them in a variety of both product and nonproduct situations. While statistical techniques are emphasized throughout, the book has a strong engineering and management orientation. Guidelines are given throughout the book for selecting the proper type of statistical technique to use in a wide variety of product and nonproduct situations. By presenting theory, and supporting the theory with clear and relevant examples, Montgomery helps the reader to understand the big picture of important concepts. Updated to reflect contemporary practice and provide more information on management aspects of quality improvement.
Principles to Actions: Ensuring Mathematical Success for All
National Council of Teachers of Mathematics - 2014
What will it take to turn this opportunity into reality in every classroom, school, and district? Continuing its tradition of mathematics education leadership, NCTM has defined and described the principles and actions, including specific teaching practices, that are essential for a high-quality mathematics education for all students. Principles to Actions: Ensuring Mathematical Success for All offers guidance to teachers, specialists, coaches, administrators, policymakers, and parents: Builds on the Principles articulated in Principles and Standards for School Mathematics to present six updated Guiding Principles for School MathematicsSupports the first Guiding Principle, Teaching and Learning, with eight essential, research-based Mathematics Teaching PracticesDetails the five remaining Principles--the Essential Elements that support Teaching and Learning as embodied in the Mathematics Teaching PracticesIdentifies obstacles and unproductive and productive beliefs that all stakeholders must recognize, as well as the teacher and student actions that characterize effective teaching and learning aligned with the Mathematics Teaching PracticesWith Principles to Actions, NCTM takes the next step in shaping the development of high-quality standards throughout the United States, Canada, and worldwide.
Numerical Optimization
Jorge Nocedal - 2000
One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Communication Systems
Simon Haykin - 1978
In addition to being the most up-to-date communications text available, Simon Haykin has added MATLAB computer experiments.
The Magic Mirror of M.C. Escher
Bruno Ernst - 1976
Escher, I am absolutely crazy about your work. In your print Reptiles you have given such a striking illustration of reincarnation.' I replied, 'Madame, if that's the way you see it, so be it, '" An engagingly sly comment by the renowned Dutch graphic artist Maurits Cornelis Escher (1898-1972)--the complex ambiguities of whose work leave hasty or single-minded interpretations far behind. Long before the first computer-generated 3-D images were thrilling the public, Escher was a master of the third dimension. His lithograph "Magic Mirror" dates as far back as 1946. In taking that title for this book, mathematician Bruno Ernst is stressing the magic spell Escher's work invariably casts on those who see it. Ernst visited Escher every week for a year, systematically talking through his entire oeuvre with him. Their discussions resulted in a friendship that gave Ernst intimate access to the life and conceptual world of Escher. Ernst's account was meticulously scrutinized and made accurate by the artist himself. Escher's work refuses to be pigeonholed. Scientific, psychological, or aesthetic criteria alone cannot do it justice. The questions remain. Why did he create the pictures? How did he construct them? What preliminary studies were necessary before he could arrive at the final version? And how are the various images Escher created interrelated? This book, complete with biographical data, 250 illustrations, and explications of mathematical problems, offers answers to these and many other questions, and is an authentic source text of the first order.
Elementary Differential Equations And Boundary Value Problems
William E. Boyce - 1996
Clear explanations are detailed with many current examples.
With British Snipers to the Reich
C. Shore - 1988
Captain Shore’s enthusiasm for firearms and especially for rifles led him to take every possible opportunity to try out different weapons, ammunition and methods of shooting. His interest was combined with sound common sense, and he would never countenance a rumour about a particular weapon or incident unless he was able to confirm it for himself.As a result everything in this book is based on his personal experience. In World War II Captain Shore took part in the British landings at D-Day, and fought in Normandy and northern Europe. He came across many different weapons in varying condition, some of the worst being those used by the Dutch and Belgian resistance fighters. He was keen to learn from experienced snipers and then to train others, and he became an officer sniping instructor at the British Army of the Rhine Training Centre.He shares a wealth of first-hand knowledge of different rifles, pistols, machine guns, ammunition, telescopes, binoculars and all the equipment a sniper should carry. This is not only an account of sniping in World War II but also a guide to all aspects of sniping based on personal knowledge and experience in training and battle. Illustrated heavily with photos, pictures and other illustrations of snipers, their weapons and their tactics.
Count Down: Six Kids Vie for Glory at the World's Toughest Math Competition
Steve Olson - 2004
Steve Olson followed the six 2001 contestants from the intense tryouts to the Olympiad’s nail-biting final rounds to discover not only what drives these extraordinary kids but what makes them both unique and typical. In the process he provides fascinating insights into the science of intelligence and learning and, finally, the nature of genius. Brilliant, but defying all the math-nerd stereotypes, these teens want to excel in whatever piques their curiosity, and they are curious about almost everything — music, games, politics, sports, literature. One team member is ardent about both water polo and creative writing. Another plays four musical instruments. For fun and entertainment during breaks, the Olympians invent games of mind-boggling difficulty. Though driven by the glory of winning this ultimate math contest, they are in many ways not so different from other teenagers, finding pure joy in indulging their personal passions. Beyond the the Olympiad, Olson sheds light on many questions, from why Americans feel so queasy about math, to why so few girls compete in the subject, to whether or not talent is innate. Inside the cavernous gym where the competition takes place, Count Down uncovers a fascinating subculture and its engaging, driven inhabitants.
How Numbers Work: Discover the Strange and Beautiful World of Mathematics (New Scientist Instant Expert)
New Scientist - 2018
No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends.The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the "imaginary" number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it?How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.
Real and Complex Analysis
Walter Rudin - 1970
The basic techniques and theorems of analysis are presented in such a way that the intimate connections between its various branches are strongly emphasized. The traditionally separate subjects of 'real analysis' and 'complex analysis' are thus united in one volume. Some of the basic ideas from functional analysis are also included. This is the only book to take this unique approach. The third edition includes a new chapter on differentiation. Proofs of theorems presented in the book are concise and complete and many challenging exercises appear at the end of each chapter. The book is arranged so that each chapter builds upon the other, giving students a gradual understanding of the subject.This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Computational Geometry: Algorithms and Applications
Mark de Berg - 1997
The focus is on algorithms and hence the book is well suited for students in computer science and engineering. Motivation is provided from the application areas: all solutions and techniques from computational geometry are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. For students this motivation will be especially welcome. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement. All the basic techniques and topics from computational geometry, as well as several more advanced topics, are covered. The book is largely self-contained and can be used for self-study by anyone with a basic background in algorithms. In the second edition, besides revisions to the first edition, a number of new exercises have been added.
Lectures on Quantum Mechanics
Paul A.M. Dirac - 1964
The remaining lectures build on that idea, examining the possibility of building a relativistic quantum theory on curved surfaces or flat surfaces.
Memoirs
Andrei D. Sakharov - 1990
The late Soviet physicist, activist, and Nobel laureate describes his upbringing, scientific work, rejection of Soviet repression, peace and human rights concerns, marriage and family, and persecution by the KGB.