Book picks similar to
Vector and Tensor Analysis by G.E. Hay


textbooks
office-bookshelf
textbook
vector-analysis

Calculus: An Intuitive and Physical Approach


Morris Kline - 1967
    In-depth explorations of the derivative, the differentiation and integration of the powers of x, and theorems on differentiation and antidifferentiation lead to a definition of the chain rule and examinations of trigonometric functions, logarithmic and exponential functions, techniques of integration, polar coordinates, much more. Clear-cut explanations, numerous drills, illustrative examples. 1967 edition. Solution guide available upon request.

Mathematical Analysis


Tom M. Apostol - 1957
    It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis.

Introduction to Graph Theory


Douglas B. West - 1995
    Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.

Operations Research: An Introduction


Hamdy A. Taha - 1976
    The applications and computations in operations research are emphasized. Significantly revised, this text streamlines the coverage of the theory, applications, and computations of operations research. Numerical examples are effectively used to explain complex mathematical concepts. A separate chapter of fully analyzed applications aptly demonstrates the diverse use of OR. The popular commercial and tutorial software AMPL, Excel, Excel Solver, and Tora are used throughout the book to solve practical problems and to test theoretical concepts. New materials include Markov chains, TSP heuristics, new LP models, and a totally new simplex-based approach to LP sensitivity analysis.

Algebra


Aurelio Baldor - 1983
    This revised edition includes a CD-Rom with exercises that will help the student have a better understanding of equations, formulas, etc.

Fundamentals of Biostatistics (with CD-ROM)


Bernard Rosner - 1982
    Fundamentals of Biostatistics with CD-Rom.

Probability And Statistics For Engineering And The Sciences


Jay L. Devore - 1982
    In this book, a wealth of exercises are provided throughout each section, designed to reinforce learning and the logical comprehension of topics. The use of real data is incorporated much more extensively than in any other book on the market. Consist of strong coverage of computer-based methods, especially in the coverage of analysis of variance and regression. This text stresses mastery of methods most often used in medical research, with specific reference to actual medical literature and actual medical research. The approach minimizes mathematical formulation, yet gives complete explanations of all important concepts. Every new concept is systematically developed through completely worked-out examples from current medical research problems. Computer output is used to illustrate concepts when appropriate.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Physical Chemistry


Ira N. Levine - 1978
    In this title, the treatment is made easy-to-follow by giving step-by-step derivations, explanations and by avoiding advanced mathematics unfamiliar to students. It covers: math and physics thorough review sections; and worked examples, followed by a practice exercise.

Linear Algebra and Its Applications [with CD-ROM]


David C. Lay - 1993
    

Introduction to Probability


Joseph K. Blitzstein - 2014
    The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo MCMC. Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Bayesian Data Analysis


Andrew Gelman - 1995
    Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.

Discrete Mathematics


Richard Johnsonbaugh - 1984
    Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.

Topology


James R. Munkres - 1975
    Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.

Course of Theoretical Physics: Vol. 1, Mechanics


L.D. Landau - 1969
    The exposition is simple and leads to the most complete direct means of solving problems in mechanics. The final sections on adiabatic invariants have been revised and augmented. In addition a short biography of L D Landau has been inserted.