Book picks similar to
Gravity: Newtonian, Post-Newtonian, Relativistic by Eric Poisson
physics
mathematics-and-physics
bibliotek
0-buy-candidate
Relativity Visualized: The Gold Nugget of Relativity Books
Lewis Carroll Epstein - 1984
By replacing equations with diagrams, the book allows non-specialist readers to fully understand the concepts in relativity without the slow, painful progress so often associated with a complicated scientific subject. It allows readers not only to know how relativity works, but also to intuitively understand it.
Universe on A T-Shirt: The Quest for the Theory of Everything
Dan Falk - 2002
- This is the best kind of popular science: informed, impassioned, and highly accessible.- Compare it to Stephen Hawking's The Universe in a Nutshell, but broader in scope and much more readable.- A crossover for the Young Adult market, now in the perfect format.
Superstrings And The Search For The Theory Of Everything
F. David Peat - 1988
David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.
Gravity
George Gamow - 1962
In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own drawings, both technical and fanciful, this remarkably reader-friendly book focuses particularly on Newton, who developed the mathematical system known today as the differential and integral calculus. Readers averse to equations can skip the discussion of the elementary principles of calculus and still achieve a highly satisfactory grasp of a fascinating subject.Starting with a chapter on Galileo’s pioneering work, this volume devotes six chapters to Newton's ideas and other subsequent developments and one chapter to Einstein, with a concluding chapter on post-Einsteinian speculations concerning the relationship between gravity and other physical phenomena, such as electromagnetic fields.
New Scientist: The Origin of (almost) Everything
New Scientist - 2020
If these galaxies had always been travelling, he reasoned, then they must, at some point, have been on top of one another. This discovery transformed the debate about one of the most fundamental questions of human existence - how did the universe begin?Every society has stories about the origin of the cosmos and its inhabitants, but now, with the power to peer into the early universe and deploy the knowledge gleaned from archaeology, geology, evolutionary biology and cosmology, we are closer than ever to understanding where it all came from. In The Origin of (almost) Everything, New Scientist explores the modern origin stories of everything from the Big Bang, meteorites and dark energy, to dinosaurs, civilisation, timekeeping, belly-button fluff and beyond.From how complex life evolved on Earth, to the first written language, to how humans conquered space, The Origin of (almost) Everything offers a unique history of the past, present and future of our universe.span
The Large Scale Structure of Space-Time
Stephen Hawking - 1973
These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.
Einstein's Telescope: The Hunt for Dark Matter and Dark Energy in the Universe
Evalyn Gates - 2009
Dark matter. These strange and invisible substances don't just sound mysterious: their unexpected appearance in the cosmic census is upending long-held notions about the nature of the Universe. Astronomers have long known that the Universe is expanding, but everything they could see indicated that gravity should be slowing this spread. Instead, it appears that the Universe is accelerating its expansion and that something stronger than gravity--dark energy--is at work. In Einstein's Telescope Evalyn Gates, a University of Chicago astrophysicist, transports us to the edge of contemporary science to explore the revolutionary tool that unlocks the secrets of these little-understood cosmic constituents. Based on Einstein's theory of general relativity, gravitational lensing, or "Einstein's Telescope," is enabling new discoveries that are taking us toward the next revolution in scientific thinking--one that may change forever our notions of where the Universe came from and where it is going.
Physics for Scientists and Engineers, Volume 1
Raymond A. Serway - 2003
However, rather than resting on that reputation, the new edition of this text marks a significant advance in the already excellent quality of the book. While preserving concise language, state of the art educational pedagogy, and top-notch worked examples, the Eighth Edition features a unified art design as well as streamlined and carefully reorganized problem sets that enhance the thoughtful instruction for which Raymond A. Serway and John W. Jewett, Jr. earned their reputations. Likewise, PHYSICS FOR SCIENTISTS AND ENGINEERS, will continue to accompany Enhanced WebAssign in the most integrated text-technology offering available today. In an environment where new Physics texts have appeared with challenging and novel means to teach students, this book exceeds all modern standards of education from the most solid foundation in the Physics market today.
General Relativity
Robert M. Wald - 1984
The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement"Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today
Biggest Secrets
William Poundstone - 1993
Fields Cookies... What backward messages on records are really trying to tell you... Frank Sinatra's real age... Why you can't counterfeit a lottery ticket... Barbra Streisand's blue movie... The other Boy Scout rituals... Ingmar Bergman's soap commercials... The formula for Play-Doh... and more.
Integrated Electronics: Analog And Digital Circuits And Systems
Jacob Millman - 1971
Fundamentals of Engineering Electromagnetics
David K. Cheng - 1992
It has been developed in response to the need for a text that supports the mastery of this difficult subject. Therefore, in addition to presenting electromagnetics in a concise and logical manner, the text includes end-of-section review questions, worked examples, boxed remarks that alert students to key ideas and tricky points, margin notes, and point-by-point chapter summaries. Examples and applications invite students to solve problems and build their knowledge of electromagnetics. Application topics include: electric motors, transmission lines, waveguides, antenna arrays and radar systems.
Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity
Steven Weinberg - 1972
Unique in basing relativity on the Principle of Equivalence of Gravitation and Inertia over Riemannian geometry, this book explores relativity experiments and observational cosmology to provide a sound foundation upon which analyses can be made. Covering special and general relativity, tensor analysis, gravitation, curvature, and more, this book provides an engaging, insightful introduction to the forces that shape the universe.