Book picks similar to
Stochastic Processes by Sheldon M. Ross
mathematics
textbooks
statistics
probability
The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
Pedro Domingos - 2015
In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.
Feedback Control of Dynamic Systems
Gene F. Franklin - 1986
Highlights of the book include realistic problems and examples from a wide range of application areas. New to this edition are: much sharper pedagogy; an increase in the number of examples; more thorough development of the concepts; a greater range of homework problems; a greater number and variety of worked out examples; expanded coverage of dynamics modelling and Laplace transform topics; and integration of MATLAB, including many examples that are formatted in MATLAB.
Networks, Crowds, and Markets
David Easley - 2010
This connectedness is found in many incarnations: in the rapid growth of the Internet, in the ease with which global communication takes place, and in the ability of news and information as well as epidemics and financial crises to spread with surprising speed and intensity. These are phenomena that involve networks, incentives, and the aggregate behavior of groups of people; they are based on the links that connect us and the ways in which our decisions can have subtle consequences for others. This introductory undergraduate textbook takes an interdisciplinary look at economics, sociology, computing and information science, and applied mathematics to understand networks and behavior. It describes the emerging field of study that is growing at the interface of these areas, addressing fundamental questions about how the social, economic, and technological worlds are connected.
Applied Predictive Modeling
Max Kuhn - 2013
Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f
Probability And Statistics For Engineers And Scientists
Ronald E. Walpole - 1978
Offers extensively updated coverage, new problem sets, and chapter-ending material to enhance the book’s relevance to today’s engineers and scientists. Includes new problem sets demonstrating updated applications to engineering as well as biological, physical, and computer science. Emphasizes key ideas as well as the risks and hazards associated with practical application of the material. Includes new material on topics including: difference between discrete and continuous measurements; binary data; quartiles; importance of experimental design; “dummy” variables; rules for expectations and variances of linear functions; Poisson distribution; Weibull and lognormal distributions; central limit theorem, and data plotting. Introduces Bayesian statistics, including its applications to many fields. For those interested in learning more about probability and statistics.
The Golden Ratio: The Story of Phi, the World's Most Astonishing Number
Mario Livio - 2002
In this fascinating book, Mario Livio tells the tale of a number at the heart of that mystery: phi, or 1.6180339887...This curious mathematical relationship, widely known as "The Golden Ratio," was discovered by Euclid more than two thousand years ago because of its crucial role in the construction of the pentagram, to which magical properties had been attributed. Since then it has shown a propensity to appear in the most astonishing variety of places, from mollusk shells, sunflower florets, and rose petals to the shape of the galaxy. Psychological studies have investigated whether the Golden Ratio is the most aesthetically pleasing proportion extant, and it has been asserted that the creators of the Pyramids and the Parthenon employed it. It is believed to feature in works of art from Leonardo da Vinci's Mona Lisa to Salvador Dali's The Sacrament of the Last Supper, and poets and composers have used it in their works. It has even been found to be connected to the behavior of the stock market!The Golden Ratio is a captivating journey through art and architecture, botany and biology, physics and mathematics. It tells the human story of numerous phi-fixated individuals, including the followers of Pythagoras who believed that this proportion revealed the hand of God; astronomer Johannes Kepler, who saw phi as the greatest treasure of geometry; such Renaissance thinkers as mathematician Leonardo Fibonacci of Pisa; and such masters of the modern world as Goethe, Cezanne, Bartok, and physicist Roger Penrose. Wherever his quest for the meaning of phi takes him, Mario Livio reveals the world as a place where order, beauty, and eternal mystery will always coexist.From the Hardcover edition.
The Art of R Programming: A Tour of Statistical Software Design
Norman Matloff - 2011
No statistical knowledge is required, and your programming skills can range from hobbyist to pro.Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: Create artful graphs to visualize complex data sets and functions Write more efficient code using parallel R and vectorization Interface R with C/C++ and Python for increased speed or functionality Find new R packages for text analysis, image manipulation, and more Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.
Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems)
Jiawei Han - 2000
Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge.Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business dataUpdates that incorporate input from readers, changes in the field, and more material on statistics and machine learningDozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projectsComplete classroom support for instructors at www.mkp.com/datamining2e companion site
Digital Communications
John G. Proakis - 1983
Includes expert coverage of new topics: Turbocodes, Turboequalization, Antenna Arrays, Digital Cellular Systems, and Iterative Detection. Convenient, sequential organization begins with a look at the historyo and classification of channel models and builds from there.
The Road to Reality: A Complete Guide to the Laws of the Universe
Roger Penrose - 2004
From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.
A Course in Game Theory
Martin J. Osborne - 1994
The authors provide precise definitions and full proofs of results, sacrificing generalities and limiting the scope of the material in order to do so. The text is organized in four parts: strategic games, extensive games with perfect information, extensive games with imperfect information, and coalitional games. It includes over 100 exercises. Solution ManualTable of Contents, Errata, and more...
Applied Linear Regression Models- 4th Edition with Student CD (McGraw Hill/Irwin Series: Operations and Decision Sciences)
Michael H. Kutner - 2003
Cases, datasets, and examples allow for a more real-world perspective and explore relevant uses of regression techniques in business today.
Mathematical Statistics and Data Analysis
John A. Rice - 1988
The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts which are set in abstract settings.
An Introduction to Formal Language and Automata
Peter Linz - 1990
The Text Was Designed To Familiarize Students With The Foundations And Principles Of Computer Science And To Strengthen The Students' Ability To Carry Out Formal And Rigorous Mathematical Arguments. In The New Fourth Edition, Author Peter Linz Has Offered A Straightforward, Uncomplicated Treatment Of Formal Languages And Automata And Avoids Excessive Mathematical Detail So That Students May Focus On And Understand The Underlying Principles. In An Effort To Further The Accessibility And Comprehension Of The Text, The Author Has Added New Illustrative Examples Throughout.