Philosophical Dictionary


Voltaire - 1764
    The subjects treated include Abraham, Angel and Anthropophages; Baptism, Beauty and Beasts; Fables, Fraud and Fanaticism; Metempsychosis, Miracles and Moses; all of them exposed to Voltaire's lucid scrutiny, his elegant irony and his passionate love of reason and justice.

Naive Set Theory


Paul R. Halmos - 1960
    This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.

On the Revolutions of Heavenly Spheres


Nicolaus Copernicus
    This essay by Copernicus (1473-1543), revolutionized the way we look at the earth's placement in the universe, and paved the way for many great scientists, including Galileo and Isaac Newton, whose theories stemmed from this model. Featuring a biography of Copernicus and an accessible, enlightening introduction, both written by the renowned physicist Stephen Hawking, On the Revolution of Heavenly Spheres provides a fascinating look at the theories which shaped our modern understanding of astronomy and physics.

Asimov on Numbers


Isaac Asimov - 1978
    From man's first act of counting to higher mathematics, from the smallest living creature to the dazzling reaches of outer space, Asimov is a master at "explaining complex material better than any other living person." (The New York Times) You'll learn: HOW to make a trillion seem small; WHY imaginary numbers are real; THE real size of the universe - in photons; WHY the zero isn't "good for nothing;" AND many other marvelous discoveries, in ASIMOV ON NUMBERS.

e: the Story of a Number


Eli Maor - 1993
    Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.

A Mathematician Reads the Newspaper


John Allen Paulos - 1995
    From the Senate, SATs, and sex, to crime, celebrities, and cults, he takes stories that may not seem to involvemathematics at all and demonstrates how a lack of mathematical knowledge canhinder our understanding of them.After reading A Mathematician Reads the Newspaper, it will beimpossible to look at the newspaper in the same way.-- PhiladelphiaInquirer It would be great to have John Allen Paulos living next door. Everymorning when you read the paper and come across some story that didn't seemquite right--that had the faint odor of illogic hovering about it-- you couldjust lean out the window and shout, 'John! Get the hell over here!'. A fun, spunky, wise little book that would be helpful to both the consumers of thenews and its purveyors. -- Washington Post Book World

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

A History of π


Petr Beckmann - 1970
    Petr Beckmann holds up this mirror, giving the background of the times when pi made progress -- and also when it did not, because science was being stifled by militarism or religious fanaticism.

The Mathematical Experience


Philip J. Davis - 1980
    This is the classic introduction for the educated lay reader to the richly diverse world of mathematics: its history, philosophy, principles, and personalities.

The Road to Reality: A Complete Guide to the Laws of the Universe


Roger Penrose - 2004
    From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.

The Joy of x: A Guided Tour of Math, from One to Infinity


Steven H. Strogatz - 2012
    do it? How should you flip your mattress to get the maximum wear out of it? How does Google search the Internet? How many people should you date before settling down? Believe it or not, math plays a crucial role in answering all of these questions and more.Math underpins everything in the cosmos, including us, yet too few of us understand this universal language well enough to revel in its wisdom, its beauty — and its joy. This deeply enlightening, vastly entertaining volume translates math in a way that is at once intelligible and thrilling. Each trenchant chapter of The Joy of x offers an “aha!” moment, starting with why numbers are so helpful, and progressing through the wondrous truths implicit in π, the Pythagorean theorem, irrational numbers, fat tails, even the rigors and surprising charms of calculus. Showing why he has won awards as a professor at Cornell and garnered extensive praise for his articles about math for the New York Times, Strogatz presumes of his readers only curiosity and common sense. And he rewards them with clear, ingenious, and often funny explanations of the most vital and exciting principles of his discipline.Whether you aced integral calculus or aren’t sure what an integer is, you’ll find profound wisdom and persistent delight in The Joy of x.

Science and Hypothesis


Henri Poincaré - 1902
    Explaining how such basic concepts as number and magnitude, space and force were developed, the great French mathematician refutes the skeptical position that modern scientific method and its results are wholly factitious. The places of rigorous logic and intuitive leaps are both established by an analysis of contrasting methods of idea-creation in individuals and in modern scientific traditions. The nature of hypothesis and the role of probability are investigated with all of Poincaré's usual fertility of insight.Partial contents: On the nature of mathematical reasoning. Magnitude and experiment. Space: non-Euclidean geometrics, space and geometry, experiment and geometry. Force: classical mechanics, relative and absolute motion, energy and thermodynamics. Nature: hypotheses in physics, the theories of modern physics, the calculus of probabilities, optics and electricity, electro-dynamics."Poincaré's was the last man to take practically all mathematics, both pure and applied as his province. Few mathematicians have had the breadth of philosophic vision that Poincaré's had, and none is his superior in the gift of clear exposition." — Men of Mathematics, Eric Temple Bell, Professor of Mathematics, University of Cambridge

The Way Things Are


Lucretius
    [captures] the relentless urgency of Lucretius' didacticism, his passionate conviction and proselytizing fervour.' --The Classical Review

The Physical Principles of the Quantum Theory


Werner Heisenberg - 1930
    His matrix theory is one of the bases of modern quantum mechanics, while his "uncertainty principle" has altered our whole philosophy of science.In this classic, based on lectures delivered at the University of Chicago, Heisenberg presents a complete physical picture of quantum theory. He covers not only his own contributions, but also those of Bohr, Dirac, Bose, de Broglie, Fermi, Einstein, Pauli, Schrodinger, Somerfield, Rupp, ·Wilson, Germer, and others in a text written for the physical scientist who is not a specialist in quantum theory or in modern mathematics.Partial contents: introduction (theory and experiment, fundamental concepts); critique of physical concepts of the corpuscular theory (uncertainty relations and their illustration); critique of the physical concepts of the wave theory (uncertainty relations for waves, discussion of an actual measurement of the electromagnetic field); statistical interpretation of quantum theory (mathematical considerations, interference of probabilities, Bohr's complementarity); discussion of important experiments (C. T. R. Wilson, diffraction , Einstein-Rupp, emission, absorption and dispersion of radiation, interference and conservation laws, Compton effect, radiation fluctuation phenomena, relativistic formulation of the quantum theory).An 80-page appendix on the mathematical apparatus of the quantum theory is provided for the specialist.

A Mathematical Introduction to Logic


Herbert B. Enderton - 1972
    The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets.