How to Solve It: A New Aspect of Mathematical Method


George Pólya - 1944
    Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.

Understanding Analysis


Stephen Abbott - 2000
    The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination.

Incompleteness: The Proof and Paradox of Kurt Gödel


Rebecca Goldstein - 2005
    "A gem…An unforgettable account of one of the great moments in the history of human thought." —Steven PinkerProbing the life and work of Kurt Gödel, Incompleteness indelibly portrays the tortured genius whose vision rocked the stability of mathematical reasoning—and brought him to the edge of madness.

Practical Algebra: A Self-Teaching Guide


Peter H. Selby - 1974
    Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical, real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio, proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry, and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.

In Praise of Mathematics


Alain Badiou - 2015
    Far from the thankless, pointless exercises they are often thought to be, mathematics and logic are indispensable guides to ridding ourselves of dominant opinions and making possible an access to truths, or to a human experience of the utmost value. That is why mathematics may well be the shortest path to the true life, which, when it exists, is characterized by an incomparable happiness.

Measurement


Paul Lockhart - 2012
    An impassioned critique of K 12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. "Measurement "offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living.In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science.Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can do the math in a way that brings emotional and aesthetic rewards. "Measurement" is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work."

The Unimaginable Mathematics of Borges' Library of Babel


William Goldbloom Bloch - 2008
    Now, in The Unimaginable Mathematics of Borges' Library of Babel, William Goldbloom Bloch takes readers on a fascinating tour of the mathematical ideas hiddenwithin one of the classic works of modern literature.Written in the vein of Douglas R. Hofstadter's Pulitzer Prize-winning G�del, Escher, Bach, this original and imaginative book sheds light on one of Borges' most complex, richly layered works. Bloch begins each chapter with a mathematical idea--combinatorics, topology, geometry, informationtheory--followed by examples and illustrations that put flesh on the theoretical bones. In this way, he provides many fascinating insights into Borges' Library. He explains, for instance, a straightforward way to calculate how many books are in the Library--an easily notated but literallyunimaginable number--and also shows that, if each book were the size of a grain of sand, the entire universe could only hold a fraction of the books in the Library. Indeed, if each book were the size of a proton, our universe would still not be big enough to hold anywhere near all the books.Given Borges' well-known affection for mathematics, this exploration of the story through the eyes of a humanistic mathematician makes a unique and important contribution to the body of Borgesian criticism. Bloch not only illuminates one of the great short stories of modern literature but alsoexposes the reader--including those more inclined to the literary world--to many intriguing and entrancing mathematical ideas.

The Book of Numbers


John H. Conway - 1995
    Whether it is a visualization of the Catalan numbers or an explanation of how the Fibonacci numbers occur in nature, there is something in here to delight everyone. The diagrams and pictures, many of which are in color, make this book particularly appealing and fun. A few of the discussions may be confusing to those who are not adept mathematicians; those who are may be irked that certain facts are mentioned without an accompanying proof. Nonetheless, The Book of Numbers will succeed in infecting any reader with an enthusiasm for numbers.

Schaum's Outline of Complex Variables


Murray R. Spiegel - 1968
    Contains 640 problems including solutions; additional practice problems with answers; explanations of complex variable theory; coverage of applications of complex variables in engineering, physics, and elsewhere, with accompanying sample problems and solutions.

Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications


Nassim Nicholas Taleb - 2020
    Switching from thin tailed to fat tailed distributions requires more than "changing the color of the dress." Traditional asymptotics deal mainly with either n=1 or n=∞, and the real world is in between, under the "laws of the medium numbers"-which vary widely across specific distributions. Both the law of large numbers and the generalized central limit mechanisms operate in highly idiosyncratic ways outside the standard Gaussian or Levy-Stable basins of convergence. A few examples: - The sample mean is rarely in line with the population mean, with effect on "na�ve empiricism," but can be sometimes be estimated via parametric methods. - The "empirical distribution" is rarely empirical. - Parameter uncertainty has compounding effects on statistical metrics. - Dimension reduction (principal components) fails. - Inequality estimators (Gini or quantile contributions) are not additive and produce wrong results. - Many "biases" found in psychology become entirely rational under more sophisticated probability distributions. - Most of the failures of financial economics, econometrics, and behavioral economics can be attributed to using the wrong distributions. This book, the first volume of the Technical Incerto, weaves a narrative around published journal articles.

Solving Mathematical Problems: A Personal Perspective


Terence Tao - 2006
    Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics.

Advanced Engineering Mathematics


Dennis G. Zill - 1992
    A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0

Discrete Mathematics


Richard Johnsonbaugh - 1984
    Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.

Mathematics: The Core Course For A Level (Core Course)


Linda Bostock - 1981
    Worked examples and exercises support the text. An ELBS/LPBB edition is available.

The Drunkard's Walk: How Randomness Rules Our Lives


Leonard Mlodinow - 2008
    From the classroom to the courtroom and from financial markets to supermarkets, Mlodinow's intriguing and illuminating look at how randomness, chance, and probability affect our daily lives will intrigue, awe, and inspire.