Book picks similar to
Differential Geometry, Gauge Theories and Gravity by Meinulf Göckeler
mathematics
physics
math
science
Hidden In Plain Sight 2: The Equation of the Universe
Andrew H. Thomas - 2013
Enjoy a thrilling intergalactic tour as Andrew Thomas redefines the force of gravity and introduces a brave new view of the universe!
Elements of Partial Differential Equations
Ian N. Sneddon - 2006
It emphasizes forms suitable for students and researchers whose interest lies in solving equations rather than in general theory. Solutions to odd-numbered problems appear at the end. 1957 edition.
How to Build a Brain and 34 Other Really Interesting Uses of Maths
Richard Elwes - 2010
You'll find out how to unknot your DNA, how to count like a supercomputer and how to become famous for solving mathematics' most challenging problem.
Number Freak: From 1 to 200- The Hidden Language of Numbers Revealed
Derrick Niederman - 2009
Includes such gems as:? There are 42 eyes in a deck of cards, and 42 dots on a pair of dice ? In order to fill in a map so that neighboring regions never get the same color, one never needs more than four colors ? Hells Angels use the number 81 in their insignia because the initials H and A are the eighth and first numbers in the alphabet respectively
The Shape of Space: How to Visualize Surfaces and Three-Dimensional Manifolds
Jeffrey R. Weeks - 1985
Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.
Mathematical Analysis
Tom M. Apostol - 1957
It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis.
Introduction to Superstrings and M-Theory
Michio Kaku - 1989
Called by some, "the theory of everything," superstrings may solve a problem that has eluded physicists for the past 50 years, the final unification of the two great theories of the twentieth century, general relativity and quantum field theory. Now, here is a thoroughly revised, second edition of a course-tested comprehensive introductory graduate text on superstrings which stresses the most current areas of interest, not covered in other presentations, including: - Four-dimensional superstrings - Kac-Moody algebras - Teichm�ller spaces and Calabi-Yau manifolds - M-theory Membranes and D-branes - Duality and BPS relations - Matrix models The book begins with a simple discussion of point particle theory, and uses Feynman path integrals to unify the presentation of superstrings. It has been updated throughout, and three new chapters on M-theory have been added. Prerequisites are an acquaintance with quantum mechanics and relativity.
The Principle of Relativity (Books on Physics)
Albert Einstein - 1952
Lorentz.
Quantum Physics for Beginners in 90 Minutes without Math: All the Major Ideas of Quantum Mechanics, from Quanta to Entanglement, in Simple Language
Modern Science - 2017
This behavior is very much different from what we humans are used to dealing with in our everyday lives, so naturally this subject is quite hard to comprehend for many. We believed that the best way to introduce the subject reliably is to start at the beginning, presenting the observations, thoughts and conclusions of each of the world’s greatest physicists through their eyes, one at a time. In this way we hope that the reader may take an enjoyable journey through the strange truths of quantum theory and understand why the conclusions of these great minds are what they are. This book starts with the most general view of the world and gradually leads readers to those new, unbelievable but real facts about the very nature of our universe.
Schaum's Outline of Differential Equations
Richard Bronson - 2006
Thoroughly updated, this edition offers new, faster techniques for solving differential equations generated by the emergence of high-speed computers.
A Student's Guide to Maxwell's Equations
Daniel Fleisch - 2007
In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.
The Speed Of Time
Sharad Nalawade - 2012
The world you live in is stranger than fiction... as you read this, you exist in other places at the same time. Do not regret having missed the chance to realize your dreams, for you may just have fulfilled it in another universe.. * Are the trillions of atoms that make you, nothing but vibrations in 10 dimensions?* Is it true that we are all connected with each other?* Can you go into the future to change the present?* Why do scientists and philosophers struggle with the concept of Time?* Can science explain consciousness through physics?* Is our fate driven by the underlying randomness in nature?* Is nature hiding the best-kept secrets which can never be unravelled by humans?The Speed of Time approaches the most complex and esoteric theories of science in lucid, clear and simple language and in the style of a thriller, leaving you wanting more... while addressing questions through the enigmatic theories in Physics such as Quantum Mechanics, Einstein's Theory of Relativity, Time, Chaos, and much more. Just start reading and you will not put it down.
Group Theory in the Bedroom, and Other Mathematical Diversions
Brian Hayes - 2008
(The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.
Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus
Michael Spivak - 1965
The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.
Algebraic Topology
Allen Hatcher - 2001
This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.