Proofs from the Book, 3e


Martin Aigner - 1998
    Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."

New SYLLABUS Mathematics 3; 6th Edition


Teh Keng Seng
    

5 Practices for Orchestrating Productive Mathematics Discussions


Margaret Schwan Smith - 2011
    Includes professional development guide.

Mathematical Elements for Computer Graphics


David F. Rogers - 1976
    It presents in a unified manner an introduction to the mathematical theory underlying computer graphic applications. It covers topics of keen interest to students in engineering and computer science: transformations, projections, 2-D and 3-D curve definition schemes, and surface definitions. It also includes techniques, such as B-splines, which are incorporated as part of the software in advanced engineering workstations. A basic knowledge of vector and matrix algebra and calculus is required.

Adam Spencer's Big Book of Numbers: Everything you wanted to know about the numbers 1 to 100


Adam Spencer - 2014
    Whether you love numbers, want to love numbers, or just love to laugh and learn about the wonderful world in which we live, this book is for you.For 15 years Adam Spencer has been entertaining us. On triple j and ABC radio and television, he’s established himself as Australia’s funniest and most famous mathematician. And now, by popular demand, we have his Big Book of Numbers, a fascinating journey from 1 to 100.Praise for Adam Spencer’s Big Book of Numbers‘If you find this book boring, you should be in a clinic.’ John Cleese‘Funny yet with hidden depths, like its author. A brilliant introduction to the world of numbers.’ Brian Cox‘Even the page numbers will start to look fascinating once you’ve read this book!’ Amanda Keller‘This book will bring out the inner geek in anyone who knows how to count to 100.’ Brian Schmidt, Winner, 2011 Nobel Prize in Physics

Practical Algebra: A Self-Teaching Guide


Peter H. Selby - 1974
    Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical, real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio, proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry, and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.

The Art and Craft of Problem Solving


Paul Zeitz - 1999
    Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.

Intentional Talk: How to Structure and Lead Productive Mathematical Discussions


Elham Kazemi - 2014
    In Intentional Talk: How to Structure and Lead Productive Mathematical Discussions , authors Elham Kazemi and Allison Hintz provide teachers with a framework for planning and facilitating purposeful math talks that move group discussions to the next level while achieving a mathematical goal.Through detailed vignettes from both primary and upper elementary classrooms, the authors provide a window into how teachers lead discussions and make important pedagogical decisions along the way. By creating equitable opportunities to share ideas, teachers can orient students to one another while enforcing that all students are sense makers and their ideas are valued. They examine students’ roles as both listeners and talkers, offering numerous strategies for improving student participation. Intentional Talk includes a collection of lesson planning templates in the appendix to help teachers apply the right structure to discussions in their own classrooms.

The Parrot's Theorem


Denis Guedj - 1998
    He turns out to be a bird who discusses maths with anyone who will listen. So when Mr Ruche learns of his friend's mysterious death in the rainforests of Brazil he decides that with the parrot's help he will use these books to teach Max and his twin brother and sister the mysteries and wonders of numbers and shapes.But soon it becomes clear that Mr Ruche has inherited the library for reasons other than pure enlightenment, and before he knows it the household are caught up in a race to prevent the vital theorems falling into the wrong hands.Charming, fresh, with a narrative which races along, the novel takes the reader on a delightful journey through the history of mathematics.

Algebra


Israel M. Gelfand - 1992
    This is a very old science and its gems have lost their charm for us through everyday use. We have tried in this book to refresh them for you. The main part of the book is made up of problems. The best way to deal with them is: Solve the problem by yourself - compare your solution with the solution in the book (if it exists) - go to the next problem. However, if you have difficulties solving a problem (and some of them are quite difficult), you may read the hint or start to read the solution. If there is no solution in the book for some problem, you may skip it (it is not heavily used in the sequel) and return to it later. The book is divided into sections devoted to different topics. Some of them are very short, others are rather long. Of course, you know arithmetic pretty well. However, we shall go through it once more, starting with easy things. 2 Exchange of terms in addition Let's add 3 and 5: 3+5=8. And now change the order: 5+3=8. We get the same result. Adding three apples to five apples is the same as adding five apples to three - apples do not disappear and we get eight of them in both cases. 3 Exchange of terms in multiplication Multiplication has a similar property. But let us first agree on notation.

Number Talks, Grades K-5: Helping Children Build Mental Math and Computation Strategies


Sherry Parrish - 2010
    The author explains what a classroom number talk is; how to follow students’ thinking and pose the right questions to build understanding; how to prepare for and design purposeful number talks; and how to develop grade-level specific thinking strategies for the operations of addition, subtraction, multiplication, and division. Number Talks includes connections to NCTM’s Principles and Standards for School Mathematics as well as reference tables to help you quickly and easily locate strategies, number talks, and video clips. Includes a Facilitator’s Guide and DVD.

Making Good Progress?: The Future of Assessment for Learning


Daisy Christodoulou - 2017
    Making Good Progress? outlines practical recommendations and support that Primary and Secondary teachers can follow in order to achieve the most effective classroom-based approach to ongoing assessment.Written by Daisy Christodoulou, Head of Assessment at Ark Academy, Making Good Progress? offers clear, up-to-date advice to help develop and extend best practice for any teacher assessing pupils in the wake of life beyond levels.

The Puzzler's Dilemma: From the Lighthouse of Alexandria to Monty Hall, a Fresh Look at Classic Conundrums of Logic, Mathematics, and Life


Derrick Niederman - 2012
    Among the old chestnuts he cracks wide open are the following classics: Knights and knaves The monk and the mountain The dominoes and the chessboard The unexpected hanging The Tower of HanoiUsing real-world analogies, infectious humor, and a fresh approach, this deceptively simple volume will challenge, amuse, enlighten, and surprise even the most experienced puzzle solver.

Solving Mathematical Problems: A Personal Perspective


Terence Tao - 2006
    Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics.

What Is Mathematics?: An Elementary Approach to Ideas and Methods


Richard Courant - 1941
    Today, unfortunately, the traditional place of mathematics in education is in grave danger. The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but does not lead to real understanding or to greater intellectual independence. This new edition of Richard Courant's and Herbert Robbins's classic work seeks to address this problem. Its goal is to put the meaning back into mathematics.Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics? Second Edition is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Covering everything from natural numbers and the number system to geometrical constructions and projective geometry, from topology and calculus to matters of principle and the Continuum Hypothesis, this fascinating survey allows readers to delve into mathematics as an organic whole rather than an empty drill in problem solving. With chapters largely independent of one another and sections that lead upward from basic to more advanced discussions, readers can easily pick and choose areas of particular interest without impairing their understanding of subsequent parts.Brought up to date with a new chapter by Ian Stewart, What is Mathematics? Second Edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.Formal mathematics is like spelling and grammar - a matter of the correct application of local rules. Meaningful mathematics is like journalism - it tells an interesting story. But unlike some journalism, the story has to be true. The best mathematics is like literature - it brings a story to life before your eyes and involves you in it, intellectually and emotionally. What is Mathematics is like a fine piece of literature - it opens a window onto the world of mathematics for anyone interested to view.