Book picks similar to
General Relativity by Robert M. Wald
physics
science
textbooks
general-relativity
Statistical Mechanics
R.K. Pathria - 1972
Highly recommended for graduate-level libraries.' ChoiceThis highly successful text, which first appeared in the year 1972 and has continued to be popular ever since, has now been brought up-to-date by incorporating the remarkable developments in the field of 'phase transitions and critical phenomena' that took place over the intervening years. This has been done by adding three new chapters (comprising over 150 pages and containing over 60 homework problems) which should enhance the usefulness of the book for both students and instructors. We trust that this classic text, which has been widely acclaimed for its clean derivations and clear explanations, will continue to provide further generations of students a sound training in the methods of statistical physics.
Quantum Field Theory in a Nutshell
A. Zee - 2003
A quantum field theory text for the twenty-first century, this book makes the essential tool of modern theoretical physics available to any student who has completed a course on quantum mechanics and is eager to go on.Quantum field theory was invented to deal simultaneously with special relativity and quantum mechanics, the two greatest discoveries of early twentieth-century physics, but it has become increasingly important to many areas of physics. These days, physicists turn to quantum field theory to describe a multitude of phenomena.Stressing critical ideas and insights, Zee uses numerous examples to lead students to a true conceptual understanding of quantum field theory--what it means and what it can do. He covers an unusually diverse range of topics, including various contemporary developments, while guiding readers through thoughtfully designed problems. In contrast to previous texts, Zee incorporates gravity from the outset and discusses the innovative use of quantum field theory in modern condensed matter theory.Without a solid understanding of quantum field theory, no student can claim to have mastered contemporary theoretical physics. Offering a remarkably accessible conceptual introduction, this text will be widely welcomed and used.
The Theoretical Minimum: What You Need to Know to Start Doing Physics
Leonard Susskind - 2013
In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
A First Course in General Relativity
Bernard F. Schutz - 1985
This textbook, based on the author's own undergraduate teaching, develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth. It reinforces this understanding by making a detailed study of the theory's most important applications - neutron stars, black holes, gravitational waves, and cosmology - using the most up-to-date astronomical developments. The book is suitable for a one-year course for beginning graduate students or for undergraduates in physics who have studied special relativity, vector calculus, and electrostatics. Graduate students should be able to use the book selectively for half-year courses.
Vibrations and Waves
Anthony P. French - 1971
Generous support from a number of foundations provided the means for assembling and maintaining an experienced staff to co-operate with members of the Institute's Physics Department in the examination, improvement, and development of physics curriculum materials for students planning careers in the sciences. After careful analysis of objectives and the problems involved, preliminary versions of textbooks were prepared, tested through classroom use at M.I.T. and other institutions, re-evaluated, rewritten, and tried again. Only then were the final manuscripts undertaken.
The Road to Reality: A Complete Guide to the Laws of the Universe
Roger Penrose - 2004
From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.
University Physics with Modern Physics
Hugh D. Young - 1949
Offering time-tested problems, conceptual and visual pedagogy, and a state-of-the-art media package, this 11th edition looks to the future of university physics, in terms of both content and approach.
Introduction to Cosmology
Barbara Ryden - 2002
The book is designed for advanced undergraduates or beginning graduate students and assumes no prior knowledge of general relativity. An emphasis is placed on developing the readers' physical insight rather than losing them with complex math. An approachable writing style and wealth of fresh and imaginative analogies from "everyday" physics are used to make the concepts of cosmology more accessible. The book is unique in that it not only includes recent major developments in cosmology, like the cosmological constant and accelerating universe, but also anticipates key developments expected in the next few years, such as detailed results on the cosmic microwave background.
Classical Mechanics
Herbert Goldstein - 1950
KEY TOPICS: This classic book enables readers to make connections between classical and modern physics - an indispensable part of a physicist's education. In this new edition, Beams Medal winner Charles Poole and John Safko have updated the book to include the latest topics, applications, and notation, to reflect today's physics curriculum. They introduce readers to the increasingly important role that nonlinearities play in contemporary applications of classical mechanics. New numerical exercises help readers to develop skills in how to use computer techniques to solve problems in physics. Mathematical techniques are presented in detail so that the book remains fully accessible to readers who have not had an intermediate course in classical mechanics. MARKET: For college instructors and students.
A Student's Guide to Maxwell's Equations
Daniel Fleisch - 2007
In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.
Mathematics of Classical and Quantum Physics
Frederick W. Byron Jr. - 1969
Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.
Mathematical Methods in the Physical Sciences
Mary L. Boas - 1967
Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.
Introduction to Classical Mechanics: With Problems and Solutions
David Morin - 2007
It also explores more advanced topics, such as normal modes, the Lagrangian method, gyroscopic motion, fictitious forces, 4-vectors, and general relativity. It contains more than 250 problems with detailed solutions so students can easily check their understanding of the topic. There are also over 350 unworked exercises which are ideal for homework assignments. Password protected solutions are available to instructors at www.cambridge.org/9780521876223. The vast number of problems alone makes it an ideal supplementary text for all levels of undergraduate physics courses in classical mechanics. Remarks are scattered throughout the text, discussing issues that are often glossed over in other textbooks, and it is thoroughly illustrated with more than 600 figures to help demonstrate key concepts.
Thermal Physics
Charles Kittel - 1969
CONGRATULATIONS TO HERBERT KROEMER, 2000 NOBEL LAUREATE FOR PHYSICS For upper-division courses in thermodynamics or statistical mechanics, Kittel and Kroemer offers a modern approach to thermal physics that is based on the idea that all physical systems can be described in terms of their discrete quantum states, rather than drawing on 19th-century classical mechanics concepts.