Book picks similar to
Transport Phenomena by R. Byron Bird


textbooks
engineering
chemical-engineering
science

Materials Science and Engineering: An Introduction


William D. Callister Jr. - 1985
    For examples see chapters 3, 4, 5 and 9. * Mechanical property coverage The Sixth Edition maintains its extensive, introductory level coverage of mechanical properties and failure--the most important materials considerations for many engineers. For examples see chapters 6, 7, & 8. * A picture is worth 1000 words! The Sixth Edition judiciously and extensively makes use of illustrations and photographs. The approximate 500 figures include a large number of photographs that show the microstructure of various materials (e.g., Figures 9.12, 10.8, 13.12, 14.15 and 16.5). * Current and up-to-date Students are presented with the latest developments in Material Science and Engineering. Such up-to-date content includes advanced ceramic and polymeric materials, composites, high-energy hard magnetic materials, and optical fibers in communications. For examples see sections 13.7, 15.19, 16.8, 20.9, and 21.14. * Why study These sections at the beginning of each chapter provide the student with reasons why it is important to learn the material covered in the chapter. * Learning objectives A brief list of learning objectives for each chapter states the key learning concepts for the chapter. * Resources to facilitate the materials selection process. Appendix B, which contains 11 properties for a set of approximately 100 materials, is included which be used in materials selection problems. An additional resource, Appendix C, contains the prices for all materials listed in Appendix B. * The text is packaged with a CD-ROM that contains 1) interactive software modules to enhance visualization of three-dimensional objects, 2) additional coverage of select topics, and 3) complete solutions to selected problems from the text in order to assist students in mastering problem-solving.

Engineering Mechanics: Statics & Dynamics


Russell C. Hibbeler - 1992
    The material is reinforced with numerous examples to illustrate principles and imaginative, well-illustrated problems of varying degrees of difficulty. The book is committed to developing users' problem-solving skills. Features new "Photorealistc" figures (approximately 400) that have been rendered in often 3D photo quality detail to appeal to visual learners. Presents a thorough combination of both static and dynamic engineering mechanics theory and applications. Features a large variety of problem types from a broad range of engineering disciplines, stressing practical, realistic situations encountered in professional practice, varying levels of difficulty, and problems that involve solution by computer. For professionals in mechanical engineering, civil engineering, aeronautical engineering, and engineering mechanics careers.

Introduction to Quantum Mechanics


David J. Griffiths - 1994
    The book s two-part coverage organizes topics under basic theory, and assembles an arsenal of approximation schemes with illustrative applications. For physicists and engineers. "

Thermodynamics and an Introduction to Thermostatistics


Herbert B. Callen - 1985
    Presents essential ideas on critical phenomena developed over the last decade in simple, qualitative terms. This new edition maintains the simple structure of the first and puts new emphasis on pedagogical considerations. Thermostatistics is incorporated into the text without eclipsing macroscopic thermodynamics, and is integrated into the conceptual framework of physical theory.

Organic Chemistry


Robert Thornton Morrison - 1959
    Some chapters have been rewritten, making topics such as conjugation and nucleophilic substitution more accessible. Problems are provided which challenge the readers' understanding. read.

Fundamentals of Logic Design


Charles H. Roth Jr. - 1975
    Author Charles H. Roth, Jr. carefully presents the theory that is necessary for understanding the fundamental concepts of logic design while not overwhelming students with the mathematics of switching theory. Divided into 20 easy-to-grasp study units, the book covers such fundamental concepts as Boolean algebra, logic gates design, flip-flops, and state machines. By combining flip-flops with networks of logic gates, students will learn to design counters, adders, sequence detectors, and simple digital systems. After covering the basics, this text presents modern design techniques using programmable logic devices and the VHDL hardware description language.

Vector Mechanics for Engineers: Dynamics


Ferdinand P. Beer - 1972
    This Eighth Edition of Vector Mechanics for Engineers: Statics marks the fiftieth anniversary of the Beer/Johnston series. Over the years, these textbooks have introduced theoretical and pedagogical innovations in statics, dynamics, and mechanics of materials education.

Mechanics of Materials, SI Edition


James M. Gere - 2002
    They are converted to metric units using realistic data to help students grasp what is feasible in engineering practice.

Mechanical Engineering Design


Joseph Edward Shigley - 1972
    This book also features the design process, streamlined coverage of statistics, an overview of materials and materials selection, failure and fatigue, and review of basic strength of materials topics.

Elements of Electromagnetics


Matthew N.O. Sadiku - 1993
    The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.

Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering


Steven H. Strogatz - 1994
    The presentation stresses analytical methods, concrete examples, and geometric intuition. A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.About the Author:Steven Strogatz is in the Center for Applied Mathematics and the Department of Theoretical and Applied Mathematics at Cornell University. Since receiving his Ph.D. from Harvard university in 1986, Professor Strogatz has been honored with several awards, including the E.M. Baker Award for Excellence, the highest teaching award given by MIT.

Fundamentals of Physics


David Halliday - 2004
    A unique combination of authoritative content and stimulating applications. * Numerous improvements in the text, based on feedback from the many users of the sixth edition (both instructors and students) * Several thousand end-of-chapter problems have been rewritten to streamline both the presentations and answers * 'Chapter Puzzlers' open each chapter with an intriguing application or question that is explained or answered in the chapter * Problem-solving tactics are provided to help beginning Physics students solve problems and avoid common error * The first section in every chapter introduces the subject of the chapter by asking and answering, "What is Physics?" as the question pertains to the chapter * Numerous supplements available to aid teachers and students The extended edition provides coverage of developments in Physics in the last 100 years, including: Einstein and Relativity, Bohr and others and Quantum Theory, and the more recent theoretical developments like String Theory.

Thermodynamics


Enrico Fermi - 1956
    Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entropy (properties of cycles, entropy of a system whose states can be represented on a (V, p) diagram, Clapeyron and Van der Waals equations), thermodynamic potentials (free energy, thermodynamic potential at constant pressure, the phase rule, thermodynamics of the reversible electric cell), gaseous reactions (chemical equilibria in gases, Van't Hoff reaction box, another proof of the equation of gaseous equilibria, principle of Le Chatelier), the thermodynamics of dilute solutions (osmotic pressure, chemical equilibria in solutions, the distribution of a solute between 2 phases vapor pressure, boiling and freezing points), the entropy constant (Nernst's theorem, thermal ionization of a gas, thermionic effect, etc.).

Signals and Systems


Alan V. Oppenheim - 1982
    KEY TOPICS: The major changes of the revision are reorganization of chapter material and the addition of a much wider range of difficulties.

University Physics with Modern Physics


Hugh D. Young - 1949
    Offering time-tested problems, conceptual and visual pedagogy, and a state-of-the-art media package, this 11th edition looks to the future of university physics, in terms of both content and approach.