Satan, Cantor, and Infinity and Other Mind-Boggling Puzzles


Raymond M. Smullyan - 1992
    The author of What Is the Name of This Book? presents a compilation of more than two hundred challenging new logic puzzles--ranging from simple brainteasers to complex mathematical paradoxes.

Introduction to the Theory of Computation


Michael Sipser - 1996
    Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.

Zero: The Biography of a Dangerous Idea


Charles Seife - 2000
    For centuries, the power of zero savored of the demonic; once harnessed, it became the most important tool in mathematics. Zero follows this number from its birth as an Eastern philosophical concept to its struggle for acceptance in Europe and its apotheosis as the mystery of the black hole. Today, zero lies at the heart of one of the biggest scientific controversies of all time, the quest for the theory of everything. Elegant, witty, and enlightening, Zero is a compelling look at the strangest number in the universe and one of the greatest paradoxes of human thought.

Ludwig Wittgenstein: The Duty of Genius


Ray Monk - 1990
    Monk's life of Wittgenstein is such a one."--"The Christian Science Monitor."

The Principles of Quantum Mechanics


Paul A.M. Dirac - 1958
    No graduate student of quantum theory should leave it unread"--W.C Schieve, University of Texas

A First Course in Probability


Sheldon M. Ross - 1976
    A software diskette provides an easy-to-use tool for students to derive probabilities for binomial.

Introduction to Metaphysics


Martin Heidegger - 1929
    In this work Heidegger presents the broadest and most intelligible account of the problem of being, as he sees this problem. First, he discusses the relevance of it by pointing out how this problem lies at the root not only of the most basic metaphysical questions but also of our human existence in its present historical setting. Then, after a short digression into the grammatical forms and etymological roots of the word "being," Heidegger enters into a lengthy discussion of the meaning of being in Greek thinking, letting pass at the same time no opportunity to stress the impact of this thinking about being on subsequent western speculation. His contention is that the meaning of being in Greek thinking underwent a serious restriction through the opposition that was introduced between being on one hand, and becoming, appearance, thinking and values on the other.

Sacred Geometry


Miranda Lundy - 1998
    In this small volume, Miranda Lundy presents a unique introduction to this most ancient and timeless of universal sciences.Sacred Geometry demonstrates what happens to space in two dimensions - a subject last flowering in the art, science and architecture of the Renaissance and seen in the designs of Stonehenge, mosque decorations and church windows. With exquisite hand-drawn images throughout showing the relationship between shapes, the patterns of coin circles, and the definition of the golden section, it will forever alter the way in which you look at a triangle, hexagon, arch, or spiral.

How to Ace Calculus: The Streetwise Guide


Colin Conrad Adams - 1998
    Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams—all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.

Algebra II For Dummies


Mary Jane Sterling - 2004
    To understand algebra is to possess the power to grow your skills and knowledge so you can ace your courses and possibly pursue further study in math. Algebra II For Dummies is the fun and easy way to get a handle on this subject and solve even the trickiest algebra problems. This friendly guide shows you how to get up to speed on exponential functions, laws of logarithms, conic sections, matrices, and other advanced algebra concepts. In no time you'll have the tools you need to:Interpret quadratic functions Find the roots of a polynomial Reason with rational functions Expose exponential and logarithmic functions Cut up conic sections Solve linear and non linear systems of equations Equate inequalities Simplifyy complex numbers Make moves with matrices Sort out sequences and sets This straightforward guide offers plenty of multiplication tricks that only math teachers know. It also profiles special types of numbers, making it easy for you to categorize them and solve any problems without breaking a sweat. When it comes to understanding and working out algebraic equations, Algebra II For Dummies is all you need to succeed!

The Mathematical Experience


Philip J. Davis - 1980
    This is the classic introduction for the educated lay reader to the richly diverse world of mathematics: its history, philosophy, principles, and personalities.

The Golden Section: Nature’s Greatest Secret


Scott Olsen - 2006
    The Golden Section—otherwise known as phi, the golden mean, or the golden ratio—is one of the most elegant and beautiful rations in the universe.Defined as a line segment divided into two unequal parts, such that the ratio of the shorter portion to the longer portion is the same as the ratio of the longer portion to the whole, it pops up throughout nature—in water, DNA, the proportions of fish and butterflies, and the number of teeth we possess—as well as in art and architecture, music, philosophy, science, and mathematics.Beautifully illustrated, The Golden Section tells the story of this remarkable construct and its wide-ranging impact on civilization and the natural world.

The Nature of Necessity


Alvin Plantinga - 1974
    The arguement is developed by means of the notion of possible worlds and ranges over key problems including the nature of essence, trans-world identity, negative existential propositions, and the existence of unactual objects in other possible worlds. In the final chapters Professor Plantinga applies his logical theories to the elucidation of two problems in the philosophy of religion: the Problem of Evil and the Ontological Arguement. The first of these, the problem of reconciling the moral perfection and omnipotence of God with the existence of evil, can, he concludes, be resolved, and the second given a sound formulation. The book ends with an appendix on Quine's objection to quantified modal logic.

The Joy of x: A Guided Tour of Math, from One to Infinity


Steven H. Strogatz - 2012
    do it? How should you flip your mattress to get the maximum wear out of it? How does Google search the Internet? How many people should you date before settling down? Believe it or not, math plays a crucial role in answering all of these questions and more.Math underpins everything in the cosmos, including us, yet too few of us understand this universal language well enough to revel in its wisdom, its beauty — and its joy. This deeply enlightening, vastly entertaining volume translates math in a way that is at once intelligible and thrilling. Each trenchant chapter of The Joy of x offers an “aha!” moment, starting with why numbers are so helpful, and progressing through the wondrous truths implicit in π, the Pythagorean theorem, irrational numbers, fat tails, even the rigors and surprising charms of calculus. Showing why he has won awards as a professor at Cornell and garnered extensive praise for his articles about math for the New York Times, Strogatz presumes of his readers only curiosity and common sense. And he rewards them with clear, ingenious, and often funny explanations of the most vital and exciting principles of his discipline.Whether you aced integral calculus or aren’t sure what an integer is, you’ll find profound wisdom and persistent delight in The Joy of x.

Linear Algebra Done Right


Sheldon Axler - 1995
    The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.