Book picks similar to
Algorithmic Randomness and Complexity by Rodney G. Downey
research
may-never-read
computer-science
tb-algorithms
Discrete Mathematics and Its Applications
Kenneth H. Rosen - 2000
These themes include mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and enhanced problem-solving skills through modeling. Its intent is to demonstrate the relevance and practicality of discrete mathematics to all students. The Fifth Edition includes a more thorough and linear presentation of logic, proof types and proof writing, and mathematical reasoning. This enhanced coverage will provide students with a solid understanding of the material as it relates to their immediate field of study and other relevant subjects. The inclusion of applications and examples to key topics has been significantly addressed to add clarity to every subject. True to the Fourth Edition, the text-specific web site supplements the subject matter in meaningful ways, offering additional material for students and instructors. Discrete math is an active subject with new discoveries made every year. The continual growth and updates to the web site reflect the active nature of the topics being discussed. The book is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite.
The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation
Gary William Flake - 1998
Distinguishing agents (e.g., molecules, cells, animals, and species) from their interactions (e.g., chemical reactions, immune system responses, sexual reproduction, and evolution), Flake argues that it is the computational properties of interactions that account for much of what we think of as beautiful and interesting. From this basic thesis, Flake explores what he considers to be today's four most interesting computational topics: fractals, chaos, complex systems, and adaptation.Each of the book's parts can be read independently, enabling even the casual reader to understand and work with the basic equations and programs. Yet the parts are bound together by the theme of the computer as a laboratory and a metaphor for understanding the universe. The inspired reader will experiment further with the ideas presented to create fractal landscapes, chaotic systems, artificial life forms, genetic algorithms, and artificial neural networks.
Numerical Optimization
Jorge Nocedal - 2000
One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
The Art of Computer Programming, Volumes 1-4a Boxed Set
Donald Ervin Knuth - 2011
Scientists have marveled at the beauty and elegance of his analysis, while ordinary programmers have successfully applied his "cookbook" solutions to their day-to-day problems. All have admired Knuth for the breadth, clarity, accuracy, and good humor found in his books. "I can't begin to tell you how many pleasurable hours of study and recreation they have afforded me I have pored over them in cars, restaurants, at work, at home... and even at a Little League game when my son wasn't in the line-up.""--"Charles Long Primarily written as a reference, some people have nevertheless found it possible and interesting to read each volume from beginning to end. A programmer in China even compared the experience to reading a poem. "If you think you're a really good programmer... read Knuth's] "Art of Computer Programming.".. You should definitely send me a resume if you can read the whole thing.""--"Bill Gates Whatever your background, if you need to do any serious computer programming, you will find your own good reason to make each volume in this series a readily accessible part of your scholarly or professional library. "It's always a pleasure when a problem is hard enough that you have to get the Knuths off the shelf. I find that merely opening one has a very useful terrorizing effect on computers.""--"Jonathan LaventholIn describing the new fourth volume, one reviewer listed the qualities that distinguish all of Knuth's work. In sum: ] "detailed coverage of the basics, illustrated with well-chosen examples; occasional forays into more esoteric topics and problems at the frontiers of research; impeccable writing peppered with occasional bits of humor; extensive collections of exercises, all with solutions or helpful hints; a careful attention to history; implementations of many of the algorithms in his classic step-by-step form."--Frank RuskeyThese four books comprise what easily could be the most important set of information on any serious programmer's bookshelf.
Probabilistic Graphical Models: Principles and Techniques
Daphne Koller - 2009
The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Mental Math: Tricks To Become A Human Calculator
Abhishek V.R. - 2017
Just read this till the end You don’t have to buy this book. Just read this till end & you will learn something that will change the way you do math forever. Warning: I am revealing this secret only to the first set of readers who will buy this book & plan to put this secret back inside the book once I have enough sales. So read this until the very end while you still can.School taught you the wrong way to do mathThe way you were taught to do math, uses a lot of working memory. Working memory is the short term memory used to complete a mental task. You struggle because trying to do mental math the way you were taught in school, overloads your working memory. Let me show you what I mean with an example:Try to multiply the 73201 x 3. To do this you multiply the following:1 x 3 =0 x 3 =2 x 3 =3 x 3 =7 x 3 =This wasn’t hard, & it might have taken you just seconds to multiply the individual numbers. However, to get the final answer, you need to remember every single digit you calculated to put them back together. It takes effort to get the answer because you spend time trying to recall the numbers you already calculated. Math would be easier to do in your head if you didn’t have to remember so many numbers. Imagine when you tried to multiply 73201 x 3, if you could have come up with the answer, in the time it took you to multiply the individual numbers. Wouldn’t you have solved the problem faster than the time it would have taken you to punch in the numbers inside a calculator? Do the opposite of what you were taught in schoolThe secret of doing mental math is to calculate from left to right instead of from right to left. This is the opposite of what you were taught in school. This works so well because it frees your working memory almost completely. It is called the LR Method where LR stands for Left to Right.Lets try to do the earlier example where we multiplied 73201 x 3. This time multiply from left to right, so we get:7 x 3 = 213 x 3 = 93 x 2 = 60 x 3 = 03 x 1 = 3Notice that you started to call out the answer before you even finished the whole multiplication problem. You don’t have to remember a thing to recall & use later. So you end up doing math a lot faster. The Smart ChoiceYou could use what you learnt & apply it to solve math in the future. This might not be easy, because we just scratched the surface. I've already done the work for you. Why try to reinvent the wheel, when there is already a proven & tested system you can immediately apply. This book was first available in video format & has helped 10,000+ students from 132 countries. It is available at ofpad.com/mathcourse to enroll. This book was written to reach students who consume the information in text format. You can use the simple techniques in this book to do math faster than a calculator effortlessly in your head, even if you have no aptitude for math to begin with.Imagine waking up tomorrow being able to do lightning fast math in your head. Your family & friends will look at you like you are some kind of a genius. Since calculations are done in your head, you will acquire better mental habits in the process. So you will not just look like a genius. You will actually be one. Limited Time BonusWeekly training delivered through email for $97 is available for free as a bonus at the end of this book for the first set of readers. Once we have enough readers, this bonus will be charged $97. Why Price Is So LowThis book is priced at a ridiculous discount only to get our first set of readers. When we have enough readers the price will go up.
How to Solve It: Modern Heuristics
Zbigniew Michalewicz - 2004
Publilius Syrus, Moral Sayings We've been very fortunate to receive fantastic feedback from our readers during the last four years, since the first edition of How to Solve It: Modern Heuristics was published in 1999. It's heartening to know that so many people appreciated the book and, even more importantly, were using the book to help them solve their problems. One professor, who published a review of the book, said that his students had given the best course reviews he'd seen in 15 years when using our text. There can be hardly any better praise, except to add that one of the book reviews published in a SIAM journal received the best review award as well. We greatly appreciate your kind words and personal comments that you sent, including the few cases where you found some typographical or other errors. Thank you all for this wonderful support.
Understanding Digital Signal Processing
Richard G. Lyons - 1996
This second edition is appropriate as a supplementary (companion) text for any college-level course covering digital signal processing.
Computers and Intractability: A Guide to the Theory of NP-Completeness
Michael R. Garey - 1979
Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.
Java 2: The Complete Reference
Herbert Schildt - 2000
This book is the most complete and up-to-date resource on Java from programming guru, Herb Schildt -- a must-have desk reference for every Java programmer.
Pattern Classification
David G. Stork - 1973
Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Statistical Inference
George Casella - 2001
Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and are natural extensions and consequences of previous concepts. This book can be used for readers who have a solid mathematics background. It can also be used in a way that stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures for a variety of situations, and less concerned with formal optimality investigations.
Missing
Shelley MacKenney - 2014
An inspirational tale of her journey through extreme personal crisis."You can run, but you can't hide from yourself."Abandoned by her mother as a young child and with a father constantly on the run, Shelley's life was never normal. Her family's involvement with South London's criminal underworld left her isolated, vulnerable and lonely. Falling deeper and deeper into depression and despair - she snapped.Shelley got on the first coach out of London with only the clothes she stood up in and £30 in her pocket. She didn't care where she was going, as long as she could disappear completely from her oppressive life. For years, she lived anonymously in refuges, hostels and on the streets. It would take something remarkable to bring her back to the real world.
Journey through Genius: The Great Theorems of Mathematics
William Dunham - 1990
Now William Dunham gives them the attention they deserve.Dunham places each theorem within its historical context and explores the very human and often turbulent life of the creator — from Archimedes, the absentminded theoretician whose absorption in his work often precluded eating or bathing, to Gerolamo Cardano, the sixteenth-century mathematician whose accomplishments flourished despite a bizarre array of misadventures, to the paranoid genius of modern times, Georg Cantor. He also provides step-by-step proofs for the theorems, each easily accessible to readers with no more than a knowledge of high school mathematics.A rare combination of the historical, biographical, and mathematical, Journey Through Genius is a fascinating introduction to a neglected field of human creativity.
Elements of Information Theory
Thomas M. Cover - 1991
Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.