Book picks similar to
Topology: A Categorical Approach by Tai-Danae Bradley
math
mathematics
category-theory
nonfiction
The Fabulous Fibonacci Numbers
Alfred S. Posamentier - 2007
In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few.Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
Ordinary Differential Equations
Morris Tenenbaum - 1985
Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Elements of Partial Differential Equations
Ian N. Sneddon - 2006
It emphasizes forms suitable for students and researchers whose interest lies in solving equations rather than in general theory. Solutions to odd-numbered problems appear at the end. 1957 edition.
The Classroom Chef: Sharpen Your Lessons, Season Your Classes, Make Math Meaninful
John Stevens - 2016
You can use these ideas and methods as-is, or better yet, tweak them and create your own enticing educational meals. The message the authors share is that, with imagination and preparation, every teacher can be a Classroom Chef.
The Emergence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference
Ian Hacking - 1975
Ian Hacking here presents a philosophical critique of early ideas about probability, induction and statistical inference and the growth of this new family of ideas in the fifteenth, sixteenth and seventeenth centuries. The contemporary debate centres round such figures as Pascal, Leibniz and Jacques Bernoulli. What brought about the change in ideas? The author invokes in his explanation a wider intellectual framework involving the growth of science, economics and the theology of the period.
The Money Formula: Dodgy Finance, Pseudo Science, and How Mathematicians Took Over the Markets
Paul Wilmott - 2017
Written not from a post-crisis perspective – but from a preventative point of view – this book traces the development of financial derivatives from bonds to credit default swaps, and shows how mathematical formulas went beyond pricing to expand their use to the point where they dwarfed the real economy. You'll learn how the deadly allure of their ice-cold beauty has misled generations of economists and investors, and how continued reliance on these formulas can either assist future economic development, or send the global economy into the financial equivalent of a cardiac arrest. Rather than rehash tales of post-crisis fallout, this book focuses on preventing the next one. By exploring the heart of the shadow economy, you'll be better prepared to ride the rough waves of finance into the turbulent future. Delve into one of the world's least-understood but highest-impact industries Understand the key principles of quantitative finance and the evolution of the field Learn what quantitative finance has become, and how it affects us all Discover how the industry's next steps dictate the economy's future How do you create a quadrillion dollars out of nothing, blow it away and leave a hole so large that even years of "quantitative easing" can't fill it – and then go back to doing the same thing? Even amidst global recovery, the financial system still has the potential to seize up at any moment. The Money Formula explores the how and why of financial disaster, what must happen to prevent the next one.
Essential Poker Math, Expanded Edition: Fundamental No Limit Hold'em Mathematics You Need To Know
Alton Hardin - 2016
This book will teach you the basic poker mathematics you need to know in order to improve and outplay your opponents, and focuses on foundational poker mathematics - the ones you’ll use day in and day out at the poker table; and probably the ones your opponents neglect.
Applied Multivariate Statistical Analysis
Richard A. Johnson - 1982
of Wisconsin-Madison) and Wichern (Texas A&M U.) present the newest edition of this college text on the statistical methods for describing and analyzing multivariate data, designed for students who have taken two or more statistics courses. The fifth edition includes the addition of seve
The Man Who Counted Infinity and Other Short Stories from Science, History and Philosophy
Sašo Dolenc - 2012
The objective here is to explain science in a simple, attractive and fun form that is open to all.The first axiom of this approach was set out as follows: “We believe in the magic of science. We hope to show you that sci-ence is not a secret art, accessible only to a dedicated few. It involves learning about nature and society, and aspects of our existence which affect us all, and which we should all therefore have the chance to understand. We shall interpret science for those who might not speak its language fluently, but want to understand its meaning. We don’t teach, we just tell stories about the beginnings of science, the natural phenomena and the underlying principles through which they occur, and the lives of the people who discovered them.”The aim of the writings collected in this series is to present some key scientific events, ideas and personalities in the form of short stories that are easy and fun to read. Scientific and philo-sophical concepts are explained in a way that anyone may under-stand. Each story may be read separately, but at the same time they all band together to form a wide-ranging introduction to the history of science and areas of contemporary scientific research, as well as some of the recurring problems science has encountered in history and the philosophical dilemmas it raises today.Review“If I were the only survivor on a remote island and all I had with me were this book, a Swiss army knife and a bottle, I would throw the bottle into the sea with the note: ‘Don’t worry, I have everything I need.’”— Ciril Horjak, alias Dr. Horowitz, a comic artist“The writing is understandable, but never simplistic. Instructive, but never patronizing. Straightforward, but never trivial. In-depth, but never too intense.”— Ali Žerdin, editor at Delo, the main Slovenian newspaper“Does science think? Heidegger once answered this question with a decisive No. The writings on modern science skillfully penned by Sašo Dolenc, these small stories about big stories, quickly convince us that the contrary is true. Not only does science think in hundreds of unexpected ways, its intellectual challenges and insights are an inexhaustible source of inspiration and entertainment. The clarity of thought and the lucidity of its style make this book accessible to anyone … in the finest tradition of popularizing science, its achievements, dilemmas and predicaments.”— Mladen Dolar, philosopher and author of A Voice and Nothing More“Sašo Dolenc is undoubtedly one of our most successful authors in the field of popular science, possessing the ability to explain complex scientific achievements to a broader audience in a clear and captivating way while remaining precise and scientific. His collection of articles is of particular importance because it encompasses all areas of modern science in an unassuming, almost light-hearted manner.”— Boštjan Žekš, physicist and former president of the Slovenian Academy of Sciences and Arts
Thomas' Calculus, Early Transcendentals, Media Upgrade
George B. Thomas Jr. - 2002
This book offers a full range of exercises, a precise and conceptual presentation, and a new media package designed specifically to meet the needs of today's readers. The exercises gradually increase in difficulty, helping readers learn to generalize and apply the concepts. The refined table of contents introduces the exponential, logarithmic, and trigonometric functions in Chapter 7 of the text.KEY TOPICS Functions, Limits and Continuity, Differentiation, Applications of Derivatives, Integration, Applications of Definite Integrals, Integrals and Transcendental Functions, Techniques of Integration, Further Applications of Integration, Conic Sections and Polar Coordinates, Infinite Sequences and Series, Vectors and the Geometry of Space, Vector-Valued Functions and Motion in Space, Partial Derivatives, Multiple Integrals, Integration in Vector Fields.MARKET For all readers interested in Calculus.
A History of π
Petr Beckmann - 1970
Petr Beckmann holds up this mirror, giving the background of the times when pi made progress -- and also when it did not, because science was being stifled by militarism or religious fanaticism.
Concepts of Modern Mathematics
Ian Stewart - 1975
Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.
Speedsolving the Cube: Easy-to-Follow, Step-by-Step Instructions for Many Popular 3-D Puzzles
Dan Harris - 2008
Here, complete with detailed illustrations and basic as well as advanced solving techniques, is the ultimate speedcuber’s guide. It not only gives the solution to the familiar 3x3x3 cube (which has 43,252,003,274,489,856,000—that’s 43 quintillion—possible positions), but also the 2x2x2, 4x4x4, and staggeringly difficult 5x5x5 puzzles. With millions of cubes out there and countless would-be champions looking for tips to improve their times, this is the definitive manual for this unique sport.
The Road to Reality: A Complete Guide to the Laws of the Universe
Roger Penrose - 2004
From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.