Introduction to Mathematical Philosophy


Bertrand Russell - 1918
    In it, Russell offers a nontechnical, undogmatic account of his philosophical criticism as it relates to arithmetic and logic. Rather than an exhaustive treatment, however, the influential philosopher and mathematician focuses on certain issues of mathematical logic that, to his mind, invalidated much traditional and contemporary philosophy.In dealing with such topics as number, order, relations, limits and continuity, propositional functions, descriptions, and classes, Russell writes in a clear, accessible manner, requiring neither a knowledge of mathematics nor an aptitude for mathematical symbolism. The result is a thought-provoking excursion into the fascinating realm where mathematics and philosophy meet — a philosophical classic that will be welcomed by any thinking person interested in this crucial area of modern thought.

An Introduction to Non-Classical Logic


Graham Priest - 2001
    Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.

Introduction to Logic: and to the Methodology of Deductive Sciences


Alfred Tarski - 1993
    According to the author, these trends sought to create a unified conceptual apparatus as a common basis for the whole of human knowledge.Because these new developments in logical thought tended to perfect and sharpen the deductive method, an indispensable tool in many fields for deriving conclusions from accepted assumptions, the author decided to widen the scope of the work. In subsequent editions he revised the book to make it also a text on which to base an elementary college course in logic and the methodology of deductive sciences. It is this revised edition that is reprinted here.Part One deals with elements of logic and the deductive method, including the use of variables, sentential calculus, theory of identity, theory of classes, theory of relations and the deductive method. The Second Part covers applications of logic and methodology in constructing mathematical theories, including laws of order for numbers, laws of addition and subtraction, methodological considerations on the constructed theory, foundations of arithmetic of real numbers, and more. The author has provided numerous exercises to help students assimilate the material, which not only provides a stimulating and thought-provoking introduction to the fundamentals of logical thought, but is the perfect adjunct to courses in logic and the foundation of mathematics.

On Certainty


Ludwig Wittgenstein - 1969
    E. Moore's defense of common sense, this much discussed volume collects Wittgenstein's reflections on knowledge and certainty, on what it is to know a proposition for sure.

Naming and Necessity


Saul A. Kripke - 1980
    It redirected philosophical attention to neglected questions of natural and metaphysical necessity and to the connections between these and theories of reference, in particular of naming, and of identity. From a critique of the dominant tendency to assimilate names to descriptions and more generally to treat their reference as a function of their Fregean sense, surprisingly deep and widespread consequences may be drawn. The largely discredited distinction between accidental and essential properties, both of individual things (including people) and of kinds of things, is revived. So is a consequent view of science as what seeks out the essences of natural kinds. Traditional objections to such views are dealt with by sharpening distinctions between epistemic and metaphysical necessity; in particular by the startling admission of necessary a posteriori truths. From these, in particular from identity statements using rigid designators whether of things or of kinds, further remarkable consequences are drawn for the natures of things, of people, and of kinds; strong objections follow, for example to identity versions of materialism as a theory of the mind.This seminal work, to which today's thriving essentialist metaphysics largely owes its impetus, is here published with a substantial new Preface by the author.

Philosophical Papers, Volume 1: Objectivity, Relativism, and Truth


Richard Rorty - 1990
    The sense in which the natural sciences are exemplary for inquiry is explicated in terms of the moral virtues of scientific communities rather than in terms of a special scientific method. The volume concludes with reflections on the relation of social democratic politics to philosophy.

Philosophy of Mathematics: Selected Readings


Paul Benacerraf - 1983
    In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Godel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.

Naive Set Theory


Paul R. Halmos - 1960
    This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.

The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number


Gottlob Frege - 1884
    The book represents the first philosophically sound discussion of the concept of number in Western civilization. It profoundly influenced developments in the philosophy of mathematics and in general ontology.

The Philosophy of Language


A.P. Martinich - 1985
    This revised edition collects forty-one of the most important articles in the field, making it the most up-to-date and comprehensive volume on the subject. The fourth edition features several new articles including influential work by Bertrand Russell, John R. Searle, John Perry, Ruth Garrett Millikan, and John Stuart Mill. Other selections include classic articles by such distinguished philosophers as Gottlob Frege, P. F. Strawson, J. L. Austin, Hilary Putnam, and David Kaplan. The selections represent evolving and varying approaches to the philosophy of language, with many articles building upon earlier ones or critically discussing them. Eight sections cover the central issues: Truth and Meaning; Speech Acts; Reference and Descriptions; Names and Demonstratives; Propositional Attitudes; Metaphor; Interpretation and Translation; and The Nature of Language. The revised general introduction and introductions to each section give students background to the issues and explain the connections between them. A list of suggested further reading follows each section.

Speech Acts: An Essay in the Philosophy of Language


John Rogers Searle - 1969
    "This small but tightly packed volume is easily the most substantial discussion of speech acts since John Austin's How To Do Things With Words and one of the most important contributions to the philosophy of language in recent decades."-Philosophical Quarterly

Ludwig Wittgenstein: The Duty of Genius


Ray Monk - 1990
    Monk's life of Wittgenstein is such a one."--"The Christian Science Monitor."

Inquiries Into Truth and Interpretation


Donald Davidson - 1984
    The original volume remains a central point of reference, and a focus of controversy, with its impact extending into linguistic theory, philosophy of mind, and epistemology. Addressing a central question--what it is for words to mean what they do--and featuring a previously uncollected, additional essay, this work will appeal to a wide audience of philosophers, linguists, and psychologists.

Language, Proof and Logic: Text and CD


Jon Barwise - 1999
    The unique on-line grading services instantly grades solutions to hundred of computer exercises. It is specially devised to be used by philosophy instructors in a way that is useful to undergraduates of philosophy, computer science, mathematics, and linguistics.The book is a completely rewritten and much improved version of The Language of First-order Logic. Introductory material is presented in a more systematic and accessible fashion. Advanced chapters include proofs of soundness and completeness for propositional and predicate logic, as well as an accessible sketch of Godel's first incompleteness theorem. The book is appropriate for a wide range of courses, from first logic courses for undergraduates (philosophy, mathematics, and computer science) to a first graduate logic course.The package includes four pieces of software:Tarski's World 5.0, a new version of the popular program that teaches the basic first-order language and its semantics; Fitch, a natural deduction proof environment for giving and checking first-order proofs;Boole, a program that facilitates the construction and checking of truth tables and related notions (tautology, tautological consequence, etc.);Submit, a program that allows students to submit exercises done with the above programs to the Grade Grinder, the automatic grading service.Grade reports are returned to the student and, if requested, to the student's instructor, eliminating the need for tedious checking of homework. All programs are available for Windows, Macintosh and Linux systems.Instructors do not need to use the programs themselves in order to be able to take advantage of their pedagogical value. More about the software can be found at lpl.stanford.edu.The price of a new text/software package includes one Registration ID, which must be used each time work is submitted to the grading service. Once activated, the Registration ID is not transferable.

Paradoxes


R.M. Sainsbury - 1988
    Unlike party puzzles or brain teasers, many paradoxes are serious in that they raise serious philosophical problems, and are associated with crises of thought and revolutionary advances. To grapple with them is not merely to engage in an intellectual game, but to come to grips with issues of real import. The second, revised edition of this intriguing book expands and updates the text to take account of new work on the subject. It provides a valuable and accessible introduction to a range of paradoxes and their possible solutions, with questions designed to engage the reader with the arguments and full bibliographical references to both classic and current literature on the topic.