Book picks similar to
The C Programming Language by Brian W. Kernighan
programming
computer-science
non-fiction
reference
How to Design Programs: An Introduction to Programming and Computing
Matthias Felleisen - 2001
Unlike other introductory books, it focuses on the program design process. This approach fosters a variety of skills--critical reading, analytical thinking, creative synthesis, and attention to detail--that are important for everyone, not just future computer programmers. The book exposes readers to two fundamentally new ideas. First, it presents program design guidelines that show the reader how to analyze a problem statement; how to formulate concise goals; how to make up examples; how to develop an outline of the solution, based on the analysis; how to finish the program; and how to test. Each step produces a well-defined intermediate product. Second, the book comes with a novel programming environment, the first one explicitly designed for beginners. The environment grows with the readers as they master the material in the book until it supports a full-fledged language for the whole spectrum of programming tasks.All the book's support materials are available for free on the Web. The Web site includes the environment, teacher guides, exercises for all levels, solutions, and additional projects.A second edition is now available.
Peopleware: Productive Projects and Teams
Tom DeMarco - 1987
The answers aren't easy -- just incredibly successful.
The Nature of Code
Daniel Shiffman - 2012
Readers will progress from building a basic physics engine to creating intelligent moving objects and complex systems, setting the foundation for further experiments in generative design. Subjects covered include forces, trigonometry, fractals, cellular automata, self-organization, and genetic algorithms. The book's examples are written in Processing, an open-source language and development environment built on top of the Java programming language. On the book's website (http://www.natureofcode.com), the examples run in the browser via Processing's JavaScript mode.
Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement
Eric Redmond - 2012
As a modern application developer you need to understand the emerging field of data management, both RDBMS and NoSQL. Seven Databases in Seven Weeks takes you on a tour of some of the hottest open source databases today. In the tradition of Bruce A. Tate's Seven Languages in Seven Weeks, this book goes beyond your basic tutorial to explore the essential concepts at the core each technology. Redis, Neo4J, CouchDB, MongoDB, HBase, Riak and Postgres. With each database, you'll tackle a real-world data problem that highlights the concepts and features that make it shine. You'll explore the five data models employed by these databases-relational, key/value, columnar, document and graph-and which kinds of problems are best suited to each. You'll learn how MongoDB and CouchDB are strikingly different, and discover the Dynamo heritage at the heart of Riak. Make your applications faster with Redis and more connected with Neo4J. Use MapReduce to solve Big Data problems. Build clusters of servers using scalable services like Amazon's Elastic Compute Cloud (EC2). Discover the CAP theorem and its implications for your distributed data. Understand the tradeoffs between consistency and availability, and when you can use them to your advantage. Use multiple databases in concert to create a platform that's more than the sum of its parts, or find one that meets all your needs at once.Seven Databases in Seven Weeks will take you on a deep dive into each of the databases, their strengths and weaknesses, and how to choose the ones that fit your needs.What You Need: To get the most of of this book you'll have to follow along, and that means you'll need a *nix shell (Mac OSX or Linux preferred, Windows users will need Cygwin), and Java 6 (or greater) and Ruby 1.8.7 (or greater). Each chapter will list the downloads required for that database.
Refactoring to Patterns
Joshua Kerievsky - 2004
In 1999, "Refactoring" revolutionized design by introducing an effective process for improving code. With the highly anticipated " Refactoring to Patterns ," Joshua Kerievsky has changed our approach to design by forever uniting patterns with the evolutionary process of refactoring.This book introduces the theory and practice of pattern-directed refactorings: sequences of low-level refactorings that allow designers to safely move designs to, towards, or away from pattern implementations. Using code from real-world projects, Kerievsky documents the thinking and steps underlying over two dozen pattern-based design transformations. Along the way he offers insights into pattern differences and how to implement patterns in the simplest possible ways.Coverage includes: A catalog of twenty-seven pattern-directed refactorings, featuring real-world code examples Descriptions of twelve design smells that indicate the need for this book s refactorings General information and new insights about patterns and refactoringDetailed implementation mechanics: how low-level refactorings are combined to implement high-level patterns Multiple ways to implement the same pattern and when to use each Practical ways to get started even if you have little experience with patterns or refactoring"Refactoring to Patterns" reflects three years of refinement and the insights of more than sixty software engineering thought leaders in the global patterns, refactoring, and agile development communities. Whether you re focused on legacy or greenfield development, this book will make you a better software designer by helping you learn how to make important design changes safely and effectively. "
Algorithms in a Nutshell
George T. Heineman - 2008
Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will:Solve a particular coding problem or improve on the performance of an existing solutionQuickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to useGet algorithmic solutions in C, C++, Java, and Ruby with implementation tipsLearn the expected performance of an algorithm, and the conditions it needs to perform at its bestDiscover the impact that similar design decisions have on different algorithmsLearn advanced data structures to improve the efficiency of algorithmsWith Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.
Game Engine Architecture
Jason Gregory - 2009
The concepts and techniques described are the actual ones used by real game studios like Electronic Arts and Naughty Dog. The examples are often grounded in specific technologies, but the discussion extends way beyond any particular engine or API. The references and citations make it a great jumping off point for those who wish to dig deeper into any particular aspect of the game development process.Intended as the text for a college level series in game programming, this book can also be used by amateur software engineers, hobbyists, self-taught game programmers, and existing members of the game industry. Junior game engineers can use it to solidify their understanding of game technology and engine architecture. Even senior engineers who specialize in one particular field of game development can benefit from the bigger picture presented in these pages.
Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability
Steve Krug - 2000
And it’s still short, profusely illustrated…and best of all–fun to read.If you’ve read it before, you’ll rediscover what made Don’t Make Me Think so essential to Web designers and developers around the world. If you’ve never read it, you’ll see why so many people have said it should be required reading for anyone working on Web sites.
Computer Science Distilled: Learn the Art of Solving Computational Problems
Wladston Ferreira Filho - 2017
Designed for readers who don't need the academic formality, it's a fast and easy computer science guide. It teaches essential concepts for people who want to program computers effectively. First, it introduces discrete mathematics, then it exposes the most common algorithms and data structures. It also shows the principles that make computers and programming languages work.
Java 8 in Action
Raoul-Gabriel Urma - 2014
The book covers lambdas, streams, and functional-style programming. With Java 8's functional features you can now write more concise code in less time, and also automatically benefit from multicore architectures. It's time to dig in!
Hackers: Heroes of the Computer Revolution
Steven Levy - 1984
That was before one pioneering work documented the underground computer revolution that was about to change our world forever. With groundbreaking profiles of Bill Gates, Steve Wozniak, MIT's Tech Model Railroad Club, and more, Steven Levy's Hackers brilliantly captured a seminal moment when the risk-takers and explorers were poised to conquer twentieth-century America's last great frontier. And in the Internet age, the hacker ethic-first espoused here-is alive and well.
Building Evolutionary Architectures: Support Constant Change
Neal Ford - 2017
Over the past few years, incremental developments in core engineering practices for software development have created the foundations for rethinking how architecture changes over time, along with ways to protect important architectural characteristics as it evolves. This practical guide ties those parts together with a new way to think about architecture and time.
Software Engineering (International Computer Science Series)
Ian Sommerville - 1982
Restructured into six parts, this new edition covers a wide spectrum of software processes from initial requirements solicitation through design and development.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Accelerate: Building and Scaling High-Performing Technology Organizations
Nicole Forsgren - 2018
Through four years of groundbreaking research, Dr. Nicole Forsgren, Jez Humble, and Gene Kim set out to find a way to measure software delivery performance—and what drives it—using rigorous statistical methods. This book presents both the findings and the science behind that research. Readers will discover how to measure the performance of their teams, and what capabilities they should invest in to drive higher performance.