Book picks similar to
An Introduction to Mathematical Modeling by Edward A. Bender
mathematics
math
textbooks
modeling
Grob Basic Electronics [Student's Edition]
Bernard Grob - 1959
It is presented in a full-color design, which allows students to read circuit diagrams and other important visuals easily.
From Mathematics to Generic Programming
Alexander A. Stepanov - 2014
If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge
The Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time
Jason Socrates Bardi - 2006
But a dispute over its discovery sowed the seeds of discontent between two of the greatest scientific giants of all time - Sir Isaac Newton and Gottfried Wilhelm Leibniz." "Today Newton and Leibniz are generally considered the twin independent inventors of calculus. They are both credited with giving mathematics its greatest push forward since the time of the Greeks. Had they known each other under different circumstances, they might have been friends. But in their own lifetimes, the joint glory of calculus was not enough for either and each declared war against the other, openly and in secret." This long and bitter dispute has been swept under the carpet by historians - perhaps because it reveals Newton and Leibniz in their worst light - but The Calculus Wars tells the full story in narrative form for the first time. This history ultimately exposes how these twin mathematical giants were brilliant, proud, at times mad, and in the end completely human.
Computability and Logic
George S. Boolos - 1980
Including a selection of exercises, adjusted for this edition, at the end of each chapter, it offers a new and simpler treatment of the representability of recursive functions, a traditional stumbling block for students on the way to the Godel incompleteness theorems.
Vector Mechanics for Engineers: Statics and Dynamics
Ferdinand P. Beer - 1972
Over the years their textbooks have introduced significant theoretical and pedagogical innovations in statics, dynamics, and mechanics of materials education. At the same time, their careful presentation of content, unmatched levels of accuracy, and attention to detail have made their texts the standard for excellence. The new Seventh Edition of Vector Mechanics for Engineers: Statics and Dynamics continues this tradition. The seventh edition is complemented by a media and supplement package that is targeted to address core course needs for both the student and the instructor.
How to Count to Infinity
Marcus du Sautoy - 2020
But this book will help you to do something that humans have only recently understood how to do: to count to regions that no animal has ever reached.
By the end of this book you'll be able to count to infinity... and beyond.
On our way to infinity we'll discover how the ancient Babylonians used their bodies to count to 60 (which gave us 60 minutes in the hour), how the number zero was only discovered in the 7th century by Indian mathematicians contemplating the void, why in China going into the red meant your numbers had gone negative and why numbers might be our best language for communicating with alien life.But for millennia, contemplating infinity has sent even the greatest minds into a spin. Then at the end of the nineteenth century mathematicians discovered a way to think about infinity that revealed that it is a number that we can count. Not only that. They found that there are an infinite number of infinities, some bigger than others. Just using the finite neurons in your brain and the finite pages in this book, you'll have your mind blown discovering the secret of how to count to infinity.Do something amazing and learn a new skill thanks to the Little Ways to Live a Big Life books!
Physics for Scientists and Engineers
Paul Allen Tipler - 1981
Now in its fourth edition, the work has been extensively revised, with entirely new artwork, updated examples and new pedagogical features. An interactive CD-ROM with worked examples is included. Alternatively, the material on from the CD-ROM can be down-loaded from a website (see supplements section). Twentieth-century developments such as quantum mechanics are introduced early on, so that students can appreciate their importance and see how they fit into the bigger picture.
Applied Mathematics: A Very Short Introduction
Alain Goriely - 2018
While pure mathematics is mostly interested in abstract structures, applied mathematics sits at the interface between this abstract world and the world inwhich we live. This area of mathematics takes its nourishment from society and science and, in turn, provides a unified way to understand problems arising in diverse fields.This Very Short Introduction presents a compact yet comprehensive view of the field of applied mathematics, and explores its relationships with (pure) mathematics, science, and engineering. Explaining the nature of applied mathematics, Alain Goriely discusses its early achievements in physics andengineering, and its development as a separate field after World War II. Using historical examples, current applications, and challenges, Goriely illustrates the particular role that mathematics plays in the modern sciences today and its far-reaching potential.ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, andenthusiasm to make interesting and challenging topics highly readable.
Essentials of Statistics
Mario F. Triola - 2001
What do you want to learn?
Discover the Power of Real Data
Mario Triola remains the market-leading statistics author by engaging readers of each edition with an abundance of real data in the examples, applications, and exercises. Statistics is all around us, and Triola helps readers understand how this course will impact their lives beyond the classroom–as consumers, citizens, and professionals. Essentials of Statistics, Fourth Edition is a more economical and streamlined introductory statistics text. Drawn from Triola’s Elementary Statistics, Eleventh Edition, this text provides the same student-friendly approach with material presented in a real-world context. The Fourth Edition contains more than 1,700 exercises (18% more than the previous edition); 89% are new and 81% use real data. The book also contains hundreds of examples; 86% are new and 92% use real data. By analyzing real data, readers are able to connect abstract concepts to the world at large, teaching them to think statistically and apply their conceptual understanding using the same methods that professional statisticians employ. Datasets and other resources (where applicable) for this book are available here.
Introduction to Algorithms: A Creative Approach
Udi Manber - 1989
The heart of this creative process lies in an analogy between proving mathematical theorems by induction and designing combinatorial algorithms. The book contains hundreds of problems and examples. It is designed to enhance the reader's problem-solving abilities and understanding of the principles behind algorithm design.
Python 3 Object Oriented Programming
Dusty Phillips - 2010
Many examples are taken from real-world projects. The book focuses on high-level design as well as the gritty details of the Python syntax. The provided exercises inspire the reader to think about his or her own code, rather than providing solved problems. If you're new to Object Oriented Programming techniques, or if you have basic Python skills and wish to learn in depth how and when to correctly apply Object Oriented Programming in Python, this is the book for you. If you are an object-oriented programmer for other languages, you too will find this book a useful introduction to Python, as it uses terminology you are already familiar with. Python 2 programmers seeking a leg up in the new world of Python 3 will also find the book beneficial, and you need not necessarily know Python 2.
The 3D Printing Handbook: Technologies, design and applications
Ben Redwood - 2017
The 3D Printing Handbook provides practical advice on selecting the right technology and how-to design for 3D printing, based upon first-hand experience from the industry’s leading experts. In this book: The mechanisms behind all major 3D printing technologies The benefits and limitations of each technology Decision making tools for technology selection Actionable design advice and guidelines Industry case studies from world-leading brands
The Algorithm Design Manual
Steven S. Skiena - 1997
Drawing heavily on the author's own real-world experiences, the book stresses design and analysis. Coverage is divided into two parts, the first being a general guide to techniques for the design and analysis of computer algorithms. The second is a reference section, which includes a catalog of the 75 most important algorithmic problems. By browsing this catalog, readers can quickly identify what the problem they have encountered is called, what is known about it, and how they should proceed if they need to solve it. This book is ideal for the working professional who uses algorithms on a daily basis and has need for a handy reference. This work can also readily be used in an upper-division course or as a student reference guide. THE ALGORITHM DESIGN MANUAL comes with a CD-ROM that contains: * a complete hypertext version of the full printed book. * the source code and URLs for all cited implementations. * over 30 hours of audio lectures on the design and analysis of algorithms are provided, all keyed to on-line lecture notes.
Discrete Mathematics
Richard Johnsonbaugh - 1984
Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving
Sanjoy Mahajan - 2010
Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.