Book picks similar to
Data Analysis and Regression: A Second Course in Statistics by Frederick Mosteller
statistics
data-science
textbooks
non-fiction
Linear Algebra Done Right
Sheldon Axler - 1995
The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.
The Humongous Book of Calculus Problems
W. Michael Kelley - 2007
Not anymore. The best-selling author of The Complete Idiot's Guide® to Calculus has taken what appears to be a typical calculus workbook, chock full of solved calculus problems, and made legible notes in the margins, adding missing steps and simplifying solutions. Finally, everything is made perfectly clear. Students will be prepared to solve those obscure problems that were never discussed in class but always seem to find their way onto exams.--Includes 1,000 problems with comprehensive solutions--Annotated notes throughout the text clarify what's being asked in each problem and fill in missing steps--Kelley is a former award-winning calculus teacher
Statistics for People Who (Think They) Hate Statistics
Neil J. Salkind - 2000
The book begins with an introduction to the language of statistics and then covers descriptive statistics and inferential statistics. Throughout, the author offers readers:- Difficulty Rating Index for each chapter′s material- Tips for doing and thinking about a statistical technique- Top tens for everything from the best ways to create a graph to the most effective techniques for data collection- Steps that break techniques down into a clear sequence of procedures- SPSS tips for executing each major statistical technique- Practice exercises at the end of each chapter, followed by worked out solutions.The book concludes with a statistical software sampler and a description of the best Internet sites for statistical information and data resources. Readers also have access to a website for downloading data that they can use to practice additional exercises from the book. Students and researchers will appreciate the book′s unhurried pace and thorough, friendly presentation.
Epidemiology: An Introduction
Kenneth J. Rothman - 2002
These areas of knowledge have converged into a modern theory of epidemiology that has been slow to penetrate into textbooks, particularly at the introductory level. Epidemiology: An Introduction closes the gap. It begins with a brief, lucid discussion of causal thinking and causal inference and then takes the reader through the elements of epidemiology, focusing on the measures of disease occurrence and causal effects. With these building blocks in place, the reader learns how to design, analyze and interpret problems that epidemiologists face, including confounding, the role of chance, and the exploration of interactions. All these topics are layered on the foundation of basic principles presented in simple language, with numerous examples and questions for further thought.
Google Hacking: An Ethical Hacking Guide To Google
Ankit Fadia - 2007
Google Hacking teaches people how to get the most out of this revolutionary search engine. Not only will this book teach readers how Google works, but it will also empower them with the necessary skills to make their everyday searches easier, more efficient, and more productive. Google Hacking also demonstrates how Google can be used for negative means. It's immense searching power, means that everyone, including cyber criminals, can feasibly access confidential data, such as company presentations, budgets, blueprints, even credit card numbers, with just the click of a mouse. Using numerous examples, case studies, and screenshots, this book explains the art of ethical Google Hacking -- it not only teaches readers how Google works, but it provides them with the knowledge they need to protect their data and systems from getting Google Hacked. This is the only book you need to maximize (and protect yourself) from Google searches!
Investigating the Social World: The Process and Practice of Research
Russell K. Schutt - 1995
In this new Seventh Edition of his perennially successful social research text, author Russell K. Schutt continues to make research come alive through stories that illustrate the methods presented in each chapter, and hands-on exercises that help students learn by doing. Investigating the Social World helps readers understand research methods as an integrated whole, appreciate the value of both qualitative and quantitative methodologies, and understand the need to make ethical research decisions. New to this Edition: * upgraded coverage of research methods to include the spread of cell phones and the use of the Internet, including expanded coverage of Web surveys * larger page size in full color allows for better display of pedagogical features * new 'Research in the News' boxes included within chapters * more international examples * expanded statistics coverage now includes more coverage of inferenctial statistics and regression analysi
The Teacher's Guide to Self-Care: Build Resilience, Avoid Burnout, and Bring a Happier and Healthier You to the Classroom
Sarah Forst - 2020
Blended Learning in Grades 4-12: Leveraging the Power of Technology to Create Student-Centered Classrooms
Catlin R. Tucker - 2012
Use technology to focus on your students!In this step-by-step guide, teacher and education blogger Catlin Tucker outlines the process for integrating online discussion with face-to-face instruction in a way that empowers teach
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
Teaching Backwards
Andy Griffith - 2014
It ensures that learners consistently make great progress over time, and offers a practical, hands-on manual for teachers to further develop their attitudes, skills and habits of excellence both for themselves and for their learners.
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
The Inclusive Classroom: Strategies for Effective Instruction
Margo A. Mastropieri - 1999
The Inclusive Classroom: Strategies for Effective Instruction provides a wealth of practical and proven strategies for successfully including students with disabilities in general education classrooms. The text is unique for its three-part coverage of fundamentals of teaching students with special needs (including legal and professional issues, and characteristics of students with special needs); effective general teaching practices (including such topics as strategies for behavior management, improving motivation, increasing attention and memory, and improving study skills); and inclusive practices in specific subject areas (including literacy, math, science and social studies, vocational and other areas). This approach allows readers to understand students with special learning needs, effective general practices for inclusive instruction, and content-specific strategies. The overall approach is one of effective instruction, those practices that are most closely aligned with academic success.
Approaches to Social Research
Royce A. Singleton Jr. - 1988
Covering all of the fundamentals in a straightforward, student-friendly manner, it is ideal for undergraduate- and graduate-level courses across the social sciences and also serves as an indispensable guide for researchers. Striking a balance between specific techniques and the underlying logic of scientific inquiry, this book provides a lucid treatment of the four major approaches to research: experimentation, survey research, field research, and the use of available data. Richly developed examples of empirical research and an emphasis on the research process enable students to better understand the real-world application of research methods. The authors also offer a unique chapter (13) advocating a multiple-methods strategy.
Assessing Learners with Special Needs: An Applied Approach
Terry Overton - 1991
Each chapter starts out with a chapter focus that contains CEC Knowledge and Skills Standards that show you what you are expected to master in the chapter. Concepts are presented in a step-by-step manner followed by exercises that help you understand each step. Portions of assessment instruments, protocols, and scoring tables are provided to help you with the practice exercises. Additionally, you will participate in the educational decision-making process using data from classroom observations, curriculum-based assessment, functional behavior assessment, and norm-referenced assessment. New to the seventh edition: An emphasis on progress monitoring, including progress monitoring applied to the acquisition of knowledge and skills presented in this text The assessment process according to the regulations of IDEA 2004 A separate chapter on transition issues and assessment A separate chapter on assessment in infancy and early childhood A new chapter on the measurement aspects of Response to Intervention Increased consideration of students from culturally and linguistically diverse backgrounds in the assessment process
Inorganic Chemistry
Catherine E. Housecroft - 2001
It offers superior coverage of all key areas, including descriptive chemistry, MO theory, bonding, and physical inorganic chemistry. Chapter topics are presented in logical order and include: basic concepts; nuclear properties; an introduction to molecular symmetry; bonding in polyatomic molecules; structures and energetics of metallic and ionic solids; acids, bases, and ions in aqueous solution; reduction and oxidation; non-aqueous media; and hydrogen. Four special topic chapters, chosen for their currency and interest, conclude the book. For researchers seeking the latest information in the field of inorganic chemistry.