Book picks similar to
An Introduction to the Theory of Numbers by Ivan Niven
mathematics
math
number-theory
nonfiction
Solving Mathematical Problems: A Personal Perspective
Terence Tao - 2006
Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics.
Numerical Recipes in C: The Art of Scientific Computing
William H. Press - 1988
In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines bringing the total to well over 300, plus upgraded versions of the original routines, the new edition remains the most practical, comprehensive handbook of scientific computing available today.
The Art and Craft of Problem Solving
Paul Zeitz - 1999
Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.
Topology
James R. Munkres - 1975
Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.
Calculus
Michael Spivak - 1967
His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Finite-Dimensional Vector Spaces
Paul R. Halmos - 1947
The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all, this is an excellent work, of equally high value for both student and teacher." Zentralblatt f�r Mathematik
Calculus
Ron Larson - 1999
It has been widely praised by a generation of users for its solid and effective pedagogy that addresses the needs of a broad range of teaching and learning styles and environments. Each title is just one component in a comprehensive calculus course program that carefully integrates and coordinates print, media, and technology products for successful teaching and learning.
Abstract Algebra
David S. Dummit - 1900
This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings. * The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible.
The Art of Problem Solving Vol. 2: And Beyond
Sandor Leholzky - 2003
The Art of Problem Solving, Volume 2, is the classic problem solving textbook used by many successful high school math teams and enrichment programs and have been an important building block for students who, like the authors, performed well enough on the American Mathematics Contest series to qualify for the Math Olympiad Summer Program which trains students for the United States International Math Olympiad team.Volume 2 is appropriate for students who have mastered the problem solving fundamentals presented in Volume 1 and are ready for a greater challenge. Although the Art of Problem Solving is widely used by students preparing for mathematics competitions, the book is not just a collection of tricks. The emphasis on learning and understanding methods rather than memorizing formulas enables students to solve large classes of problems beyond those presented in the book.Speaking of problems, the Art of Problem Solving, Volume 2, contains over 500 examples and exercises culled from such contests as the Mandelbrot Competition, the AMC tests, and ARML. Full solutions (not just answers!) are available for all the problems in the solution manual.
Elementary Linear Algebra with Applications
Howard Anton - 1973
It proceeds from familiar concepts to the unfamiliar, from the concrete to the abstract. Readers consistently praise this outstanding text for its expository style and clarity of presentation. The applications version features a wide variety of interesting, contemporary applications. Clear, accessible, step-by-step explanations make the material crystal clear. Established the intricate thread of relationships between systems of equations, matrices, determinants, vectors, linear transformations and eigenvalues.
Quantum Computation and Quantum Information
Michael A. Nielsen - 2000
A wealth of accompanying figures and exercises illustrate and develop the material in more depth. They describe what a quantum computer is, how it can be used to solve problems faster than familiar "classical" computers, and the real-world implementation of quantum computers. Their book concludes with an explanation of how quantum states can be used to perform remarkable feats of communication, and of how it is possible to protect quantum states against the effects of noise.
Introduction to Real Analysis
Robert G. Bartle - 1982
Therefore, this book provides the fundamental concepts and techniques of real analysis for readers in all of these areas. It helps one develop the ability to think deductively, analyze mathematical situations and extend ideas to a new context. Like the first two editions, this edition maintains the same spirit and user-friendly approach with some streamlined arguments, a few new examples, rearranged topics, and a new chapter on the Generalized Riemann Integral.
Introductory Graph Theory
Gary Chartrand - 1984
Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics — profusely illustrated — include: Mathematical Models, Elementary Concepts of Graph Theory, Transportation Problems, Connection Problems, Party Problems, Digraphs and Mathematical Models, Games and Puzzles, Graphs and Social Psychology, Planar Graphs and Coloring Problems, and Graphs and Other Mathematics. A useful Appendix covers Sets, Relations, Functions, and Proofs, and a section devoted to exercises — with answers, hints, and solutions — is especially valuable to anyone encountering graph theory for the first time. Undergraduate mathematics students at every level, puzzlists, and mathematical hobbyists will find well-organized coverage of the fundamentals of graph theory in this highly readable and thoroughly enjoyable book.
The Colossal Book of Mathematics
Martin Gardner - 2001
Gardner's array of absorbing puzzles and mind-twisting paradoxes opens mathematics up to the world at large, inspiring people to see past numbers and formulas and experience the application of mathematical principles to the mysterious world around them. With articles on topics ranging from simple algebra to the twisting surfaces of Mobius strips, from an endless game of Bulgarian solitaire to the unreachable dream of time travel, this volume comprises a substantial and definitive monument to Gardner's influence on mathematics, science, and culture.In its twelve sections, The Colossal Book of Math explores a wide range of areas, each startlingly illuminated by Gardner's incisive expertise. Beginning with seemingly simple topics, Gardner expertly guides us through complicated and wondrous worlds: by way of basic algebra we contemplate the mesmerizing, often hilarious, linguistic and numerical possibilities of palindromes; using simple geometry, he dissects the principles of symmetry upon which the renowned mathematical artist M. C. Escher constructs his unique, dizzying universe. Gardner, like few thinkers today, melds a rigorous scientific skepticism with a profound artistic and imaginative impulse. His stunning exploration of "The Church of the Fourth Dimension," for example, bridges the disparate worlds of religion and science by brilliantly imagining the spatial possibility of God's presence in the world as a fourth dimension, at once "everywhere and nowhere."With boundless wisdom and his trademark wit, Gardner allows the reader to further engage challenging topics like probability and game theory which have plagued clever gamblers, and famous mathematicians, for centuries. Whether debunking Pascal's wager with basic probability, making visual music with fractals, or uncoiling a "knotted doughnut" with introductory topology, Gardner continuously displays his fierce intelligence and gentle humor. His articles confront both the comfortingly mundane—"Generalized Ticktacktoe" and "Sprouts and Brussel Sprouts"—and the quakingly abstract—"Hexaflexagons," "Nothing," and "Everything." He navigates these staggeringly obscure topics with a deft intelligence and, with addendums and suggested reading lists, he informs these classic articles with new insight.Admired by scientists and mathematicians, writers and readers alike, Gardner's vast knowledge and burning curiosity reveal themselves on every page. The culmination of a lifelong devotion to the wonders of mathematics, The Colossal Book of Mathematics is the largest and most comprehensive math book ever assembled by Gardner and remains an indispensable volume for the amateur and expert alike.
Introduction to Algorithms
Thomas H. Cormen - 1989
Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.