Book picks similar to
Optimal Transport: Old and New by Cédric Villani
mathematics
49-calculus-of-variations
economics
quant
The Complete Idiot's Guide to Game Theory
Edward C. Rosenthal - 2005
It is based on the idea that everyone acts competitively and in his own best interest. With the help of mathematical models, it is possible to anticipate the actions of others in nearly all life's enterprises. This book includes down-to-earth examples and solutions, as well as charts and illustrations designed to help teach the concept. In The Complete Idiot's Guide® to Game Theory, Dr. Edward C. Rosenthal makes it easy to understand game theory with insights into:? The history of the disciple made popular by John Nash, the mathematician dramatized in the film A Beautiful Mind? The role of social behavior and psychology in this amazing discipline? How important game theory has become in our society and why
Now You See It: Simple Visualization Techniques for Quantitative Analysis
Stephen Few - 2009
Employing a methodology that is primarily learning by example and “thinking with our eyes,” this manual features graphs and practical analytical techniques that can be applied to a broad range of data analysis tools—including the most commonly used Microsoft Excel. This approach is particularly valuable to those who need to make sense of quantitative business data by discerning meaningful patterns, trends, relationships, and exceptions that reveal business performance, potential problems and opportunities, and hints about the future. It provides practical skills that are useful to managers at all levels and to those interested in keeping a keen eye on their business.
Introduction to Elementary Particles
David J. Griffiths - 1987
It is also aimed at graduate students, either as a primary text or as preparation for a more sophisticated treatment.
Advances in Financial Machine Learning
Marcos López de Prado - 2018
Today, ML algorithms accomplish tasks that - until recently - only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest.In the book, readers will learn how to:Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting.Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Programming in Haskell
Graham Hutton - 2006
This introduction is ideal for beginners: it requires no previous programming experience and all concepts are explained from first principles via carefully chosen examples. Each chapter includes exercises that range from the straightforward to extended projects, plus suggestions for further reading on more advanced topics. The author is a leading Haskell researcher and instructor, well-known for his teaching skills. The presentation is clear and simple, and benefits from having been refined and class-tested over several years. The result is a text that can be used with courses, or for self-learning. Features include freely accessible Powerpoint slides for each chapter, solutions to exercises and examination questions (with solutions) available to instructors, and a downloadable code that's fully compliant with the latest Haskell release.
Algorithmic Trading And DMA: An Introduction To Direct Access Trading Strategies
Barry Johnson - 2010
This book starts from the ground up to provide detailed explanations of both these techniques: - An introduction to the different types of execution is followed by a review of market microstructure theory. Throughout the book examples from empirical studies bridge the gap between the theory and practice of trading. - Orders are the fundamental building blocks for any strategy. Market, limit, stop, hidden, iceberg, peg, routed and immediate-or-cancel orders are all described with illustrated examples. - Trading algorithms are explained and compared using charts to show potential trading patterns. TWAP, VWAP, Percent of Volume, Minimal Impact, Implementation Shortfall, Adaptive Shortfall, Market On Close and Pairs trading algorithms are all covered, together with common variations. - Transaction costs can have a significant effect on investment returns. An in-depth example shows how these may be broken down into constituents such as market impact, timing risk, spread and opportunity cost and other fees. - Coverage includes all the major asset classes, from equities to fixed income, foreign exchange and derivatives. Detailed overviews for each of the world's major markets are provided in the appendices. - Order placement and execution tactics are covered in more detail, as well as potential enhancements (such as short-term forecasts), for those interested in the specifics of implementing these strategies. - Cutting edge applications such as portfolio and multi-asset trading are also considered, as are handling news and data mining/artificial intelligence.
Math Through the Ages: A Gentle History for Teachers and Others
William P. Berlinghoff - 2002
Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."
Models.Behaving.Badly.: Why Confusing Illusion with Reality Can Lead to Disaster, on Wall Street and in Life
Emanuel Derman - 2011
The reliance traders put on such quantitative analysis was catastrophic for the economy, setting off the series of financial crises that began to erupt in 2007 with the mortgage crisis and from which we're still recovering. Here Derman looks at why people--bankers in particular--still put so much faith in these models, and why it's a terrible mistake to do so.Though financial models imitate the style of physics by using the language of mathematics, ultimately they deal with human beings. Their similarity confuses the fundamental difference between the aims and possible achievements of the phsyics world and that of the financial world. When we make a model involving human beings, we are trying to force the ugly stepsister's foot into Cinderella's pretty glass slipper. It doesn't fit without cutting off some of the essential parts. Physicists and economists have been too enthusiastic to recognize the limits of their equations in the sphere of human behavior--which of course is what economics is all about. Models.Behaving.Badly. includes a personal account Derman's childhood encounter with failed models--the utopia of the kibbutz, his experience as a physicist on Wall Street, and a look at the models quants generated: the benefits they brought and the problems they caused. Derman takes a close look at what a model is, and then he highlights the differences between the success of modeling in physics and its relative failure in economics. Describing the collapse of the subprime mortgage CDO market in 2007, Derman urges us to stop relying on these models where possible, and offers suggestions for mending these models where they might still do some good. This is a fascinating, lyrical, and very human look behind the curtain at the intersection between mathematics and human nature.
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora
Data Structures and Algorithm Analysis in C
Mark Allen Weiss - 1992
The book's conceptual presentation focuses on ADTs and the analysis of algorithms for efficiency, with a particular concentration on performance and running time. The second edition contains a new chapter that examines advanced data structures such as red black trees, top down splay trees, treaps, k-d trees, and pairing heaps among others. All code examples now conform to ANSI C and coverage of the formal proofs underpinning several key data structures has been strengthened.
Problem-Solving Strategies
Arthur Engel - 1997
The discussion of problem solving strategies is extensive. It is written for trainers and participants of contests of all levels up to the highest level: IMO, Tournament of the Towns, and the noncalculus parts of the Putnam Competition. It will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", "problem of the month", and "research problem of the year" to their students, thus bringing a creative atmosphere into their classrooms with continuous discussions of mathematical problems. This volume is a must-have for instructors wishing to enrich their teaching with some interesting non-routine problems and for individuals who are just interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. Very few problems have no solutions. Readers interested in increasing the effectiveness of the book can do so by working on the examples in addition to the problems thereby increasing the number of problems to over 1300. In addition to being a valuable resource of mathematical problems and solution strategies, this volume is the most complete training book on the market.
Computational Complexity
Christos H. Papadimitriou - 1993
It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.
Neural Networks for Pattern Recognition
Christopher M. Bishop - 1996
After introducing the basic concepts, the book examines techniques for modeling probability density functions and the properties and merits of the multi-layerperceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.
Cryptography Engineering: Design Principles and Practical Applications
Niels Ferguson - 2010
Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography Shows you how to build cryptography into products from the start Examines updates and changes to cryptography Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.