Best of
Algorithms
1992
Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
David A. Cox - 1992
There is a close relationship between ideals and varieties which reveals the intimate link between algebra and geometry. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. The algorithms to answer questions such as those posed above are an important part of algebraic geometry. This book bases its discussion of algorithms on a generalization of the division algorithm for polynomials in one variable that was only discovered in the 1960's. Although the algorithmic roots of algebraic geometry are old, the computational aspects were neglected earlier in this century. This has changed in recent years, and new algorithms, coupled with
Using Hard Problems to Create Pseudorandom Generators
Noam Nisan - 1992
Noam Nisan continues the investigation into the power of randomization and the relationships between randomized and deterministic complexity classes by pursuing the idea of emulating randomness, or pseudorandom generation. Pseudorandom generators reduce the number of random bits required by randomized algorithms, enable the construction of certain cryptographic protocols, and shed light on the difficulty of simulating randomized algorithms by deterministic ones. The research described here deals with two methods of constructing pseudorandom generators from hard problems and demonstrates some surprising connections between pseudorandom generators and seemingly unrelated topics such as multiparty communication complexity and random oracles. Nisan first establishes a precise connection between computational complexity and pseudorandom number generation, revealing that efficient deterministic simulation of randomized algorithms is possible under much weaker assumptions than was previously known, and bringing to light new consequences concerning the power of random oracles. Using a remarkable argument based on multiparty communication complexity, Nisan then constructs a generator that is good against all tests computable in logarithmic space. A consequence of this result is a new construction of universal traversal sequences.ContentsIntroduction - Hardness vs. Randomness - Pseudorandom Generators for Logspace and Multiparty Protocols