Book picks similar to
Ergodic Theory And Information by Patrick Billingsley
ms-library
p-unsorted
technical-scientific
60-probability-and-stochastic
Introduction to Probability
Dimitri P. Bertsekas - 2002
This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.
Fooling Houdini: Magicians, Mentalists, Math Geeks, and the Hidden Powers of the Mind
Alex Stone - 2011
By investing some of the lesser-known corners of psychology, neuroscience, physics, history, and even crime, all through the lens of trickery and illusion, Fooling Houdini arrives at a host of startling revelations about how the mind works--and why, sometimes, it doesn’t.
The Magic of Math: Solving for X and Figuring Out Why
Arthur T. Benjamin - 2015
joyfully shows you how to make nature's numbers dance."--Bill Nye (the science guy)The Magic of Math is the math book you wish you had in school. Using a delightful assortment of examples-from ice-cream scoops and poker hands to measuring mountains and making magic squares-this book revels in key mathematical fields including arithmetic, algebra, geometry, and calculus, plus Fibonacci numbers, infinity, and, of course, mathematical magic tricks. Known throughout the world as the "mathemagician," Arthur Benjamin mixes mathematics and magic to make the subject fun, attractive, and easy to understand for math fan and math-phobic alike."A positively joyful exploration of mathematics."-Publishers Weekly, starred review"Each [trick] is more dazzling than the last."-Physics World
The Simpsons and Their Mathematical Secrets
Simon Singh - 2013
That they exist, Simon Singh reveals, underscores the brilliance of the shows' writers, many of whom have advanced degrees in mathematics in addition to their unparalleled sense of humor. While recounting memorable episodes such as “Bart the Genius” and “Homer3,” Singh weaves in mathematical stories that explore everything from p to Mersenne primes, Euler's equation to the unsolved riddle of P v. NP; from perfect numbers to narcissistic numbers, infinity to even bigger infinities, and much more. Along the way, Singh meets members of The Simpsons' brilliant writing team-among them David X. Cohen, Al Jean, Jeff Westbrook, and Mike Reiss-whose love of arcane mathematics becomes clear as they reveal the stories behind the episodes. With wit and clarity, displaying a true fan's zeal, and replete with images from the shows, photographs of the writers, and diagrams and proofs, The Simpsons and Their Mathematical Secrets offers an entirely new insight into the most successful show in television history.
Thinking In Numbers: On Life, Love, Meaning, and Math
Daniel Tammet - 2012
In Tammet's world, numbers are beautiful and mathematics illuminates our lives and minds. Using anecdotes, everyday examples, and ruminations on history, literature, and more, Tammet allows us to share his unique insights and delight in the way numbers, fractions, and equations underpin all our lives. Inspired by the complexity of snowflakes, Anne Boleyn's eleven fingers, or his many siblings, Tammet explores questions such as why time seems to speed up as we age, whether there is such a thing as an average person, and how we can make sense of those we love. Thinking In Numbers will change the way you think about math and fire your imagination to see the world with fresh eyes.
Sensual Math: Poems
Alice Fulton - 1995
In Sensual Math, her broad-ranging intelligence continues to surprise and electrify. Drenched with the beauties of perception and language, with syntactical stretch and give, Sensual Math embraces areas often excluded from poetry. Drawing upon science, myth, popular culture, feminist theory, and autobiography, Alice Fulton creates an entrancing and important postmodern poetics. In the sequence called "My Last TV Campaign," an advertising executive tries to apply the successful imitative strategies of nature to a context of consumerism. By reimagining the myth of Daphne and Apollo, another sequence dismantles attitudes surrounding rape and the ancient association of woman with nature and man with culture. Daphne becomes a composite of Amelia Earhart, Annie Oakley, Emily Dickinson, and Marianne Moore. A major work by a poet who has been called breathtakingly fluent, blessedly unpredictable, "Sensual Math" figures the world as a blend of Zen and Elvis, calculus and honey. The final triumph is that poems so profound can be so profoundly engaging.
Gametek: The Math and Science of Gaming
Geoffrey Engelstein - 2018
Connecting games to math, science, and psychology, GameTek has grown to be one of the most popular parts of the show.This volume commemorates the anniversary with a collection of over seventy of the best segments, many with annotations and illustrations.With chapters on everything from Rock, Paper, Scissors to the Prisoner’s Dilemma to Player Engagement to Quasicrystals to Buddha’s Forbidden Games, GameTek is sure to delight not just game designers and players, but anyone who wants to learn about the world from a new perspective.Sections:• Game Theory• Math• Psychology• Science• Game Mechanics• Psychology Games• HistoryFrom the first time I heard it, the GameTek segment in The Dice Tower podcast became my favorite part of the show. Listening to Geoff is like going to your favorite lesson with your favorite teacher. He teaches about games (yay!) and does it in a very interesting way with lots of examples. He does amazing stuff. He knows about the construction of games, he knows the theory, he knows all that stuff behind the scenes that we gamers do not see when just playing a game and having fun.Ignacy Trzewiczek, Portal GamesThere are many hobby game 'experts' out there, dying to give you their opinion on how the industry works, how games work, what types of games are best, and so on. Geoff Engelstein is the expert that requires your attention. He is a scholar of games, and his research on games and other principles that apply to gaming is matched by none.Stephen Buonocore, Stronghold GamesOver the years, I’ve listened to a lot of people talk about board games, yet the short snippets that Geoff puts out are the ones that I find myself thinking about in the quiet of the night. His are the segments that you laugh at and say, “I have NO idea what you are talking about” — but later on use to show people just how intellectual you are.Tom Vasel, The Dice Tower
Introduction to Classical Mechanics: With Problems and Solutions
David Morin - 2007
It also explores more advanced topics, such as normal modes, the Lagrangian method, gyroscopic motion, fictitious forces, 4-vectors, and general relativity. It contains more than 250 problems with detailed solutions so students can easily check their understanding of the topic. There are also over 350 unworked exercises which are ideal for homework assignments. Password protected solutions are available to instructors at www.cambridge.org/9780521876223. The vast number of problems alone makes it an ideal supplementary text for all levels of undergraduate physics courses in classical mechanics. Remarks are scattered throughout the text, discussing issues that are often glossed over in other textbooks, and it is thoroughly illustrated with more than 600 figures to help demonstrate key concepts.
How the Universe Got Its Spots: Diary of a Finite Time in a Finite Space
Janna Levin - 2002
For even as she sets out to determine how big “really big” may be, Levin gives us an intimate look at the day-to-day life of a globe-trotting physicist, complete with jet lag and romantic disturbances.Nimbly synthesizing geometry, topology, chaos and string theories, Levin shows how the pattern of hot and cold spots left over from the big bang may one day reveal the size and shape of the cosmos. She does so with such originality, lucidity—and even poetry—that How the Universe Got Its Spots becomes a thrilling and deeply personal communication between a scientist and the lay reader.
Elementary Statistics: A Step by Step Approach
Allan G. Bluman - 1992
The book is non-theoretical, explaining concepts intuitively and teaching problem solving through worked examples and step-by-step instructions. This edition places more emphasis on conceptual understanding and understanding results. This edition also features increased emphasis on Excel, MINITAB, and the TI-83 Plus and TI 84-Plus graphing calculators, computing technologies commonly used in such courses.
Linear Algebra
Georgi E. Shilov - 1971
Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.
Stochastic Calculus Models for Finance II: Continuous Time Models (Springer Finance)
Steven E. Shreve - 2004
The content of this book has been used successfully with students whose mathematics background consists of calculus and calculus-based probability. The text gives both precise statements of results, plausibility arguments, and even some proofs, but more importantly intuitive explanations developed and refine through classroom experience with this material are provided. The book includes a self-contained treatment of the probability theory needed for shastic calculus, including Brownian motion and its properties. Advanced topics include foreign exchange models, forward measures, and jump-diffusion processes.This book is being published in two volumes. This second volume develops shastic calculus, martingales, risk-neutral pricing, exotic options and term structure models, all in continuous time.Masters level students and researchers in mathematical finance and financial engineering will find this book useful.Steven E. Shreve is Co-Founder of the Carnegie Mellon MS Program in Computational Finance and winner of the Carnegie Mellon Doherty Prize for sustained contributions to education.
The Quantum Universe: Everything That Can Happen Does Happen
Brian Cox - 2011
Cox and Forshaw's contention? There is no need for quantum mechanics to be viewed this way. There is a lot of mileage in the 'weirdness' of the quantum world, and it often leads to confusion and, frankly, bad science. The Quantum Universe cuts through the Wu Li and asks what observations of the natural world made it necessary, how it was constructed, and why we are confident that, for all its apparent strangeness, it is a good theory.The quantum mechanics of The Quantum Universe provide a concrete model of nature that is comparable in its essence to Newton’s laws of motion, Maxwell’s theory of electricity and magnetism, and Einstein’s theory of relativity.