Mathematical Analysis


Tom M. Apostol - 1957
    It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis.

The Physics of NASCAR: How to Make Steel + Gas + Rubber = Speed


Diandra Leslie-Pelecky - 2008
    In this fast-paced investigation into the adrenaline-pumping world of NASCAR, a physicist with a passion uncovers what happens when the rubber hits the road and 800- horsepower vehicles compete at 190 miles per hour only inches from one another. Diandra Leslie-Pelecky reveals how and why drivers trust the engineering and science their teams literally build around them not only to get them across the finish line in first place, but also to keep them alive. Professor Leslie-Pelecky is a physicist in love with the sport’s beauty and power and is uniquely qualified to explain exactly how physics translates into winning races. Based on the author’s extensive access to race shops, pit crews, crew chiefs and mechanics, this book traces the life cycle of a race car from behind the scenes at top race shops to the track. The Physics of NASCAR takes readers right into the ultra competitive world of NASCAR, from the champion driver’s hot seat behind the detachable steering wheel to the New Zealander nicknamed Kiwi in charge of shocks for the No. 19 car. Diandra Leslie-Pelecky tells her story in terms anyone who drives a car--and maybe occasionally looks under the hood--can understand. How do drivers walk away from serious crashes? How can two cars travel faster together than either car can on its own? How do you dress for a 1800°F gasoline fire? In simple yet detailed, high-octane prose, this is the ultimate thrill ride for armchair speed demons, auto science buffs, and NASCAR fans at every level of interest. Readers, start your engines.

Zeno's Paradox: Unraveling the Ancient Mystery Behind the Science of Space and Time


Joseph Mazur - 2008
    Today, these paradoxes remain on the cutting edge of our investigations into the fabric of space and time. Zeno's Paradox uses the motion paradox as a jumping-off point for an exploration of the twenty-five-hundred-year quest to uncover the true nature of the universe. From Galileo to Einstein to Stephen Hawking, some of the greatest minds in history have tackled the problem and made spectacular breakthroughs, but through it all, the paradox of motion remains.

Einstein for Everyone


Robert L. Piccioni - 2010
    Nor do you need to be a great scientist to appreciate the exciting discoveries and intriguing mysteries of our universe. Dr. Robert piccioni brings the excitement of modern scientific discoveries to general audiences. He makes the key facts and concepts understandable without "dumbing" them down. He presents them in a friendly, conversational manner and includes many personal anecdotes about the people behind the science. With 33 images and over 100 graphics, this book explains the real science behind the headlines and sound bites. Learn all about:our universe: how big? how old? what came before?the big bang, black holes and supernovaequantum mechanics and uncertaintyhow the immense and the minute are connectedwhat is special about general relativityhow mankind can become earth's best friend

Cosmology


Steven Weinberg - 2008
    It divides into two parts, each of which provides enough material for a one-semester graduate course. The first part deals chiefly with the isotropic and homogeneous average universe; the second part concentrates on the departures from the average universe. Throughout the book the author presents detailed analytic calculations of cosmological phenomena, rather than just report results obtained elsewhere by numerical computation. The book is up to date, and gives detailed accounts of topics such as recombination, microwave background polarization, leptogenesis, gravitational lensing, structure formation, and multifield inflation, that are usually treated superficially if at all in treatises on cosmology. Copious references to current research literature are supplied. Appendices include a brief introduction to general relativity, and a detailed derivation of the Boltzmann equation for photons and neutrinos used in calculations of cosmological evolution. Also provided is an assortment of problems.

Semiconductor Optoelectronic Devices


Pallab Bhattacharya - 1993
    KEY TOPICS: Coverage begins with an optional review of key concepts--such as properties of compound semiconductor, quantum mechanics, semiconductor statistics, carrier transport properties, optical processes, and junction theory--then progress gradually through more advanced topics. The Second Edition has been both updated and expanded to include the recent developments in the field.

Gravitation


Charles W. Misner - 1973
    These sections together make an appropriate one-term advanced/graduate level course (mathematical prerequisites: vector analysis and simple partial-differential equations). The book is printed to make it easy for readers to identify these sections.• The remaining Track 2 material provides a wealth of advanced topics instructors can draw from to flesh out a two-term course, with Track 1 sections serving as prerequisites.

S. Chand's Principles Of Physics For XI


V.K. Mehta
    Simple langauge and systematic development of the subject matter. Emphasis on concepts and clear mathematical derivations

General Relativity


Robert M. Wald - 1984
    The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement"Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today

Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus


Michael Spivak - 1965
    The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.

Quantum Mechanics: Concepts and Applications


Nouredine Zettili - 2001
    It combines the essential elements of the theory with the practical applications. Containing many examples and problems with step-by-step solutions, this cleverly structured text assists the reader in mastering the machinery of quantum mechanics. * A comprehensive introduction to the subject * Includes over 65 solved examples integrated throughout the text * Includes over 154 fully solved multipart problems * Offers an indepth treatment of the practical mathematical tools of quantum mechanics * Accessible to teachers as well as students

A Course of Pure Mathematics


G.H. Hardy - 1908
    Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.

Solid State Physics


Neil W. Ashcroft - 1976
    This book provides an introduction to the field of solid state physics for undergraduate students in physics, chemistry, engineering, and materials science.

Microelectronics


Jacob Millman - 1979
    With pedagogical use of second color, it covers devices in one place so that circuit characteristics are developed early.

Algebraic Topology


Allen Hatcher - 2001
    This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.