Book picks similar to
Basic Thermodynamics by Gerald Carrington
an-university-courses
half-read-suspended
physics
textbook
Quantum Physics for Beginners: From Wave Theory to Quantum Computing. Understanding How Everything Works by a Simplified Explanation of Quantum Physics and Mechanics Principles
Carl J. Pratt - 2021
Mechanical Engineering Design
Joseph Edward Shigley - 1972
This book also features the design process, streamlined coverage of statistics, an overview of materials and materials selection, failure and fatigue, and review of basic strength of materials topics.
Physical Chemistry
Ira N. Levine - 1978
In this title, the treatment is made easy-to-follow by giving step-by-step derivations, explanations and by avoiding advanced mathematics unfamiliar to students. It covers: math and physics thorough review sections; and worked examples, followed by a practice exercise.
Introduction to Linear Algebra
Gilbert Strang - 1993
Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.
Clinical Hematology Atlas
Bernadette F. Rodak - 1998
It offers complete coverage of the basics of hematologic morphology, including examination of the peripheral blood smear, basic maturation of the blood cell lines, and discussions of a variety of clinical disorders. Over 400 photomicrographs, schematic diagrams, and electron micrographs visually clarify hematology from normal cell maturation to the development of various pathologies.Normal Newborn Peripheral Blood Morphology chapter covers the unique normal cells found in neonatal blood.A variety of high-quality schematic diagrams, photomicrographs, and electron micrographs visually reinforce your understanding of hematologic cellular morphology.Spiral binding and compact size make this book easy to use in a laboratory setting.Coverage of common cytochemical stains, along with a summary chart for interpretation, aids in classifying malignant and benign leukoproliferative disorders.Morphologic abnormalities are presented in chapters on erythrocytes and leukocytes, along with a schematic description of each cell, to provide correlations to various disease states.Body Fluids chapter covers the other fluids found in the body besides blood, using images from cytocentrifuged specimens.Updated information on the subtypes of chronic lymphocytic leukemia (CLL) helps you recognize variant forms of CLL you may encounter in the lab.
Mathematical Methods for Physicists
George B. Arfken - 1970
This work includes differential forms and the elegant forms of Maxwell's equations, and a chapter on probability and statistics. It also illustrates and proves mathematical relations.
A First Course in General Relativity
Bernard F. Schutz - 1985
This textbook, based on the author's own undergraduate teaching, develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth. It reinforces this understanding by making a detailed study of the theory's most important applications - neutron stars, black holes, gravitational waves, and cosmology - using the most up-to-date astronomical developments. The book is suitable for a one-year course for beginning graduate students or for undergraduates in physics who have studied special relativity, vector calculus, and electrostatics. Graduate students should be able to use the book selectively for half-year courses.
Mathematics of Classical and Quantum Physics
Frederick W. Byron Jr. - 1969
Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.
Gravity: An Introduction to Einstein's General Relativity
James B. Hartle - 2002
Using a "physics first" approach to the subject, renowned relativist James B. Hartle provides a fluent and accessible introduction that uses a minimum of new mathematics and is illustrated with a wealth of exciting applications. KEY TOPICS: The emphasis is on the exciting phenomena of gravitational physics and the growing connection between theory and observation. The Global Positioning System, black holes, X-ray sources, pulsars, quasars, gravitational waves, the Big Bang, and the large scale structure of the universe are used to illustrate the widespread role of how general relativity describes a wealth of everyday and exotic phenomena. MARKET: For anyone interested in physics or general relativity.
Modern Quantum Mechanics
J.J. Sakurai - 1985
DLC: Quantum theory.
Biology
Neil A. Campbell - 1987
This text has invited more than 4 million students into the study of this dynamic and essential discipline.The authors have restructured each chapter around a conceptual framework of five or six big ideas. An Overview draws students in and sets the stage for the rest of the chapter, each numbered Concept Head announces the beginning of a new concept, and Concept Check questions at the end of each chapter encourage students to assess their mastery of a given concept. New Inquiry Figures focus students on the experimental process, and new Research Method Figures illustrate important techniques in biology. Each chapter ends with a Scientific Inquiry Question that asks students to apply scientific investigation skills to the content of the chapter.
Fourier Series
Georgi P. Tolstov - 1976
Over 100 problems at ends of chapters. Answers in back of book. 1962 edition.
Quantum Mechanics: Concepts and Applications
Nouredine Zettili - 2001
It combines the essential elements of the theory with the practical applications. Containing many examples and problems with step-by-step solutions, this cleverly structured text assists the reader in mastering the machinery of quantum mechanics. * A comprehensive introduction to the subject * Includes over 65 solved examples integrated throughout the text * Includes over 154 fully solved multipart problems * Offers an indepth treatment of the practical mathematical tools of quantum mechanics * Accessible to teachers as well as students