Dice World: Science and Life in a Random Universe


Brian Clegg - 2013
    Admittedly real life wasn’t like that. But only, they argued, because we didn’t have enough data to be certain.Then the cracks began to appear. It proved impossible to predict exactly how three planets orbiting each other would move. Meteorologists discovered that the weather was truly chaotic – so dependent on small variations that it could never be predicted for more than a few days out. And the final nail in the coffin was quantum theory, showing that everything in the universe has probability at its heart.That gives human beings a problem. We understand the world through patterns. Randomness and probability will always be alien to us. But it’s time to plunge into this fascinating, shadowy world, because randomness crops up everywhere. Probability and statistics are the only way to get a grip on nature’s workings. They may even seal the fate of free will and predict how the universe will end.Forget Newton’s clockwork universe. Welcome to Dice World.

Calculus [With CDROM]


James Stewart - 1986
    Stewart's Calculus is successful throughout the world because he explains the material in a way that makes sense to a wide variety of readers. His explanations make ideas come alive, and his problems challenge, to reveal the beauty of calculus. Stewart's examples stand out because they are not just models for problem solving or a means of demonstrating techniques--they also encourage readers to develp an analytic view of the subject. This edition includes new problems, examples, and projects.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Philosophy of Mathematics: Selected Readings


Paul Benacerraf - 1983
    In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Godel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.

Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions


Michael G. Milton - 2009
    If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.

Reality is Not What it Seems: The Journey to Quantum Gravity


Carlo Rovelli - 2014
    Here he explains how our image of the world has changed throughout centuries. Fom Aristotle to Albert Einstein, Michael Faraday to the Higgs boson, he takes us on a wondrous journey to show us that beyond our ever-changing idea of reality is a whole new world that has yet to be discovered.

The First Six Books of the Elements of Euclid


Oliver Byrne - 1847
     Euclid in living color   Nearly a century before Mondrian made geometrical red, yellow, and blue lines famous, 19th century mathematician Oliver Byrne employed the color scheme for the figures and diagrams in his most unusual 1847 edition of Euclid's Elements. The author makes it clear in his subtitle that this is a didactic measure intended to distinguish his edition from all others: “The Elements of Euclid in which coloured diagrams and symbols are used instead of letters for the greater ease of learners.” As Surveyor of Her Majesty’s Settlements in the Falkland Islands, Byrne had already published mathematical and engineering works previous to 1847, but never anything like his edition on Euclid. This remarkable example of Victorian printing has been described as one of the oddest and most beautiful books of the 19th century. Each proposition is set in Caslon italic, with a four-line initial, while the rest of the page is a unique riot of red, yellow, and blue. On some pages, letters and numbers only are printed in color, sprinkled over the pages like tiny wild flowers and demanding the most meticulous alignment of the different color plates for printing. Elsewhere, solid squares, triangles, and circles are printed in bright colors, expressing a verve not seen again on the pages of a book until the era of Dufy, Matisse, and Derain.

Why Information Grows: The Evolution of Order, from Atoms to Economies


Cesar A. Hidalgo - 2015
    He believes that we should investigate what makes some countries more capable than others. Complex products—from films to robots, apps to automobiles—are a physical distillation of an economy’s knowledge, a measurable embodiment of its education, infrastructure, and capability. Economic wealth accrues when applications of this knowledge turn ideas into tangible products; the more complex its products, the more economic growth a country will experience.A radical new interpretation of global economics, Why Information Grows overturns traditional assumptions about the development of economies and the origins of wealth and takes a crucial step toward making economics less the dismal science and more the insightful one.

The Artist and the Mathematician: The Story of Nicolas Bourbaki, the Genius Mathematician Who Never Existed


Amir D. Aczel - 2006
    Pure mathematics, the area of Bourbaki's work, seems on the surface to be an abstract field of human study with no direct connection with the real world. In reality, however, it is closely intertwined with the general culture that surrounds it. Major developments in mathematics have often followed important trends in popular culture; developments in mathematics have acted as harbingers of change in the surrounding human culture. The seeds of change, the beginnings of the revolution that swept the Western world in the early decades of the twentieth century — both in mathematics and in other areas — were sown late in the previous century. This is the story both of Bourbaki and the world that created him in that time. It is the story of an elaborate intellectual joke — because Bourbaki, one of the foremost mathematicians of his day — never existed.

The Pea and the Sun: A Mathematical Paradox


Leonard M. Wapner - 2005
    Would you believe that these five pieces can be reassembled in such a fashion so as to create two apples equal in shape and size to the original? Would you believe that you could make something as large as the sun by breaking a pea into a finite number of pieces and putting it back together again? Neither did Leonard Wapner, author of The Pea and the Sun, when he was first introduced to the Banach-Tarski paradox, which asserts exactly such a notion. Written in an engaging style, The Pea and the Sun catalogues the people, events, and mathematics that contributed to the discovery of Banach and Tarski's magical paradox. Wapner makes one of the most interesting problems of advanced mathematics accessible to the non-mathematician.

The Signal and the Noise: Why So Many Predictions Fail—But Some Don't


Nate Silver - 2012
    He solidified his standing as the nation's foremost political forecaster with his near perfect prediction of the 2012 election. Silver is the founder and editor in chief of FiveThirtyEight.com. Drawing on his own groundbreaking work, Silver examines the world of prediction, investigating how we can distinguish a true signal from a universe of noisy data. Most predictions fail, often at great cost to society, because most of us have a poor understanding of probability and uncertainty. Both experts and laypeople mistake more confident predictions for more accurate ones. But overconfidence is often the reason for failure. If our appreciation of uncertainty improves, our predictions can get better too. This is the "prediction paradox": The more humility we have about our ability to make predictions, the more successful we can be in planning for the future.In keeping with his own aim to seek truth from data, Silver visits the most successful forecasters in a range of areas, from hurricanes to baseball, from the poker table to the stock market, from Capitol Hill to the NBA. He explains and evaluates how these forecasters think and what bonds they share. What lies behind their success? Are they good-or just lucky? What patterns have they unraveled? And are their forecasts really right? He explores unanticipated commonalities and exposes unexpected juxtapositions. And sometimes, it is not so much how good a prediction is in an absolute sense that matters but how good it is relative to the competition. In other cases, prediction is still a very rudimentary-and dangerous-science.Silver observes that the most accurate forecasters tend to have a superior command of probability, and they tend to be both humble and hardworking. They distinguish the predictable from the unpredictable, and they notice a thousand little details that lead them closer to the truth. Because of their appreciation of probability, they can distinguish the signal from the noise.

Essential Poker Math, Expanded Edition: Fundamental No Limit Hold'em Mathematics You Need To Know


Alton Hardin - 2016
    This book will teach you the basic poker mathematics you need to know in order to improve and outplay your opponents, and focuses on foundational poker mathematics - the ones you’ll use day in and day out at the poker table; and probably the ones your opponents neglect.

The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy


Sharon Bertsch McGrayne - 2011
    To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.

Mathematics: From the Birth of Numbers


Jan Gullberg - 1997
    The book is unique among popular books on mathematics in combining an engaging, easy-to-read history of the subject with a comprehensive mathematical survey text. Intended, in the author's words, "for the benefit of those who never studied the subject, those who think they have forgotten what they once learned, or those with a sincere desire for more knowledge," it links mathematics to the humanities, linguistics, the natural sciences, and technology.Contains more than 1000 original technical illustrations, a multitude of reproductions from mathematical classics and other relevant works, and a generous sprinkling of humorous asides, ranging from limericks and tall stories to cartoons and decorative drawings.

Data Analysis Using Regression and Multilevel/Hierarchical Models


Andrew Gelman - 2006
    The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. Author resource page: http: //www.stat.columbia.edu/ gelman/arm/