Naive Set Theory


Paul R. Halmos - 1960
    This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.

The Fabulous Fibonacci Numbers


Alfred S. Posamentier - 2007
    In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few.Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.

Synergetics


R. Buckminster Fuller - 1975
    In his own words: "Dare to be naive... It is one of our most exciting discoveries that local discovery leads to a complex of further discoveries."

Forecasting: Principles and Practice


Rob J. Hyndman - 2013
    Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.

The Mathematical Theory of Communication


Claude Shannon - 1949
    Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

A Practical Guide to Quantitative Finance Interviews


Xinfeng Zhou - 2008
    In this book we analyze solutions to more than 200 real interview problems and provide valuable insights into how to ace quantitative interviews. The book covers a variety of topics that you are likely to encounter in quantitative interviews: brain teasers, calculus, linear algebra, probability, stochastic processes and stochastic calculus, finance and programming.

The Collapse of Chaos: Discovering Simplicity in a Complex World


Jack Cohen - 1994
    The book tackles the question of how complexity arises in nature, of how life overcomes chaos and entropy to create developing order. Co-written with biologist Jack Cohen, the book will range across the central areas of modern science, from quantum mechanics and cosmology to evolution and intelligence, looking at the central questions of order, chaos, reductionism and complexity.

The Calculus Direct


John Weiss - 2009
    The calculus is not a hard subject and I prove this through an easy to read and obvious approach spanning only 100 pages. I have written this book with the following type of student in mind; the non-traditional student returning to college after a long break, a notoriously weak student in math who just needs to get past calculus to obtain a degree, and the garage tinkerer who wishes to understand a little more about the technical subjects. This book is meant to address the many fundamental thought-blocks that keep the average 'mathaphobe' (or just an interested person who doesn't have the time to enroll in a course) from excelling in mathematics in a clear and concise manner. It is my sincerest hope that this book helps you with your needs.Show more Show less

Mathematics In The Modern World: Readings From Scientific American


Morris Kline - 1968
    

Advanced Engineering Mathematics


Dennis G. Zill - 1992
    A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0

Quantum Computation and Quantum Information


Michael A. Nielsen - 2000
    A wealth of accompanying figures and exercises illustrate and develop the material in more depth. They describe what a quantum computer is, how it can be used to solve problems faster than familiar "classical" computers, and the real-world implementation of quantum computers. Their book concludes with an explanation of how quantum states can be used to perform remarkable feats of communication, and of how it is possible to protect quantum states against the effects of noise.

A First Course in Probability


Sheldon M. Ross - 1976
    A software diskette provides an easy-to-use tool for students to derive probabilities for binomial.

A Mathematician's Lament


Paul Lockhart
    He proposes his solution.

Introduction to Modern Cryptography: Principles and Protocols


Jonathan Katz - 2007
    Introduction to Modern Cryptography provides a rigorous yet accessible treatment of modern cryptography, with a focus on formal definitions, precise assumptions, and rigorous proofs.The authors introduce the core principles of modern cryptography, including the modern, computational approach to security that overcomes the limitations of perfect secrecy. An extensive treatment of private-key encryption and message authentication follows. The authors also illustrate design principles for block ciphers, such as the Data Encryption Standard (DES) and the Advanced Encryption Standard (AES), and present provably secure constructions of block ciphers from lower-level primitives. The second half of the book focuses on public-key cryptography, beginning with a self-contained introduction to the number theory needed to understand the RSA, Diffie-Hellman, El Gamal, and other cryptosystems. After exploring public-key encryption and digital signatures, the book concludes with a discussion of the random oracle model and its applications.Serving as a textbook, a reference, or for self-study, Introduction to Modern Cryptography presents the necessary tools to fully understand this fascinating subject.

An Introduction To Quantum Field Theory


Michael E. Peskin - 1994
    The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.